
Embedded IDE Link™ MU 1
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
Embedded IDE Link™ MU User’s Guide
© COPYRIGHT 2007-2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
November 2007 Online only New for Version 1.0 (Release 2007b+)
March 2008 Online only Revised for Version 1.0.1 (Release 2008a)
October 2008 Online only Revised for Version 1.1 (Release 2008b)
March 2009 Online only Revised for Version 1.2 (Release 2009a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started

1
Product Overview . 1-2

The Structure and Components of Embedded IDE Link
MU Software . 1-4
Embedded IDE Link MU Components 1-4
Automation Interface . 1-4
Project Generator . 1-5
Verification . 1-5
Configuring Embedded IDE Link MU and Green Hills®
MULTI Software . 1-6

Configuring Green Hills® MULTI to use Full Directory
Paths . 1-9

Automation Interface
2

Getting Started with Automation Interface 2-2
Introducing the Automation Interface Tutorial 2-2
Starting and Stopping Green Hills MULTI From the
MATLAB Desktop . 2-5

Running the Interactive Tutorial . 2-9
Querying Objects for Green Hills MULTI Software 2-9
Loading Files into Green Hills MULTI Software 2-11
Visibility and MULTI . 2-12
Running the Project . 2-13
Working With Data in Memory . 2-13
More Memory Data Manipulation . 2-16
Closing the Connections to Green Hills MULTI Software . . 2-19
Tasks Performed During the Tutorial 2-19

Constructing Objects . 2-21
Example — Constructor for ghsmulti Objects 2-21

iii

Properties and Property Values . 2-23
Working with Properties . 2-23
Setting and Retrieving Property Values 2-23
Setting Property Values Directly at Construction 2-24
Setting Property Values with set . 2-24
Retrieving Properties with get . 2-25
Direct Property Referencing to Set and Get Values 2-25
Overloaded Functions for ghsmulti Objects 2-26

ghsmulti Object Properties . 2-27
Quick Reference to ghsmulti Properties 2-27
Details About ghsmulti Object Properties 2-27

Project Generator

3
Introducing Project Generator . 3-2

Using the Embedded IDE Link MU Blockset 3-3

Project Generator Tutorial . 3-10
Process for Building and Generating a Project 3-10
Create the Model . 3-11
Adding the Target Preferences Block to Your Model 3-12
Specifying Simulink Configuration Parameters for Your
Model . 3-15

Creating Your Project . 3-17

Code Generation Options for Supported Processors . . 3-19

Setting Real-Time Workshop Category Options 3-22
About Select Tree Category Options 3-22
Target Selection . 3-23
Build Process . 3-24
Custom Storage Class . 3-24
Report Options . 3-25
Debug Pane Options . 3-25
Optimization Pane Options . 3-26

iv Contents

Embedded IDE Link MU Pane Options 3-28
Overrun Indicator and Software-Based Timer 3-34

Schedulers and Timing . 3-35
Configuring Models for Asynchronous Scheduling 3-35
Using Asynchronous Scheduling . 3-37
Comparing Synchronous and Asynchronous Interrupt
Processing . 3-39

Using Synchronous Scheduling . 3-41
Using Asynchronous Scheduling . 3-42
Multitasking Scheduler Examples . 3-47

Optimizing Embedded Code with Target Function
Libraries . 3-61
About Target Function Libraries and Optimization 3-61
Using a Processor-Specific Target Function Library to
Optimize Code . 3-63

Process of Determining Optimization Effects Using
Real-Time Profiling Capability . 3-64

Reviewing Processor-Specific Target Function Library
Changes in Generated Code . 3-64

Reviewing Target Function Library Operators and
Functions . 3-67

Creating Your Own Target Function Library 3-67

Model Reference and Embedded IDE Link MU
Software . 3-68
About Model Reference . 3-68
How Model Reference Works . 3-68
Using Model Reference with Embedded IDE Link MU
Software . 3-70

Configuring Targets to Use Model Reference 3-71

Verification
4

What Is Verification? . 4-2

Using Processor-in-the-Loop . 4-3

v

Processor-in-the-Loop Overview . 4-3
PIL Block . 4-6
PIL Issues . 4-6
Creating and Using PIL Blocks . 4-8

Real-Time Execution Profiling . 4-12
Overview . 4-12
Profiling Execution by Tasks . 4-13
Profiling Execution By Subsystems 4-15

Function Reference
5

Constructor . 5-2

File and Project Operations . 5-3

Processor Operations . 5-4

Debug Operations . 5-5

Data Manipulation . 5-6

Status Operations . 5-7

Functions — Alphabetical List

6

Block Reference
7

Blackfin Support . 7-2

vi Contents

Core Support . 7-3

MPC5500 Support . 7-4

MPC7400 Support . 7-5

Target Preferences . 7-6

Blocks — Alphabetical List

8

Embedded IDE LinkMU Software Configuration
Parameters

9
Embedded IDE Link MU Pane . 9-2
Embedded IDE Link MU Overview 9-4
Export MULTI link handle to base workspace 9-5
MULTI link handle name . 9-7
Profile real-time execution . 9-9
Profile by . 9-11
Number of profiling samples to collect 9-12
Inline run-time library functions . 9-14
Compiler options string . 9-16
System stack size (MAUs) . 9-18
System heap size (MAUs) . 9-19
Build action . 9-20
Interrupt overrun notification method 9-22
Interrupt overrun notification function 9-24
PIL block action . 9-25
Maximum time allowed to build project (s) 9-27
Maximum time to complete MULTI operations (s) 9-29
Source file replacement . 9-31

vii

Examples

A
Automation Interface . A-2

Working with Links . A-2

Project Generator . A-2

Asynchronous Scheduler . A-2

Mutlitasking Scheduler . A-2

Verification . A-2

Index

viii Contents

1

Getting Started

• “Product Overview” on page 1-2

• “The Structure and Components of Embedded IDE Link MU Software”
on page 1-4

1 Getting Started

Product Overview
Embedded IDE Link™ MU software provides an interface between MATLAB®
and the Green Hills MULTI® IDE software. The software enables you to

• Access the processor

• Manipulate data on the processor

• Manage projects within the IDE

while using the MATLAB numerical analysis and simulation functions.

Embedded IDE Link MU software connects MATLAB and Simulink® with
Green Hills MULTI integrated development and debugging environment
from Green Hills®. The software enables you to use MATLAB and Simulink
to debug and verify embedded code running on many microprocessors that
Green Hills MULTI software supports, such as the Freescale™ MPC5500 and
MPC7400, Blackfin®, and NEC® V850 families.

Using the software, you can perform the following tasks and others related to
Model-Based Design:

• Function calls — Write scripts in MATLAB to execute any function in the
Green Hills MULTI IDE

• Automation — Write automated tests in MATLAB to execute on your
processor, including control and verification operations

• Host-Processor Communication — Communicate with the processor
directly from MATLAB, without going to the IDE

• Verification and Validation

- Load and execute projects into the Green Hills MULTI IDE software
from the MATLAB command line

- Build and compile code, and then use vectors of test data and parameters
to test the code

- Build and compile your code, and then download the code to the
processor and execute it

1-2

Product Overview

• Design models — Design models and algorithms in MATLAB and Simulink
and run them on the processor

• Generate code — Generate executable code for your processor directly from
the models designed in Simulink, and execute it

Embedded IDE Link MU software includes a project generator component.
With the project generator component, you can generate a complete project
file for Green Hills MULTI software from Simulink models, using C code
generated with Real-Time Workshop® software. Thus, you can use both
Real-Time Workshop and Real-Time Workshop® Embedded Coder™ software
to generate generic ANSI C code projects for Green Hills MULTI from
Simulink models. You can then build and run the code on supported
processors.

The following list suggests some of the uses for Embedded IDE Link MU
software:

• Create test benches in MATLAB and Simulink for testing your manually
written or automatically generated code running on a variety of DSPs

• Generate code and project files for Green Hills MULTI software from
Simulink models using both Real-Time Workshop and Real-Time Workshop
Embedded Coder software for rapid prototyping or deployment of a system
or application

• Build, debug, and verify embedded code on supported processors with
MATLAB, Simulink, and Green Hills MULTI software

• Perform processor-in-the-loop (PIL) testing of embedded code

1-3

1 Getting Started

The Structure and Components of Embedded IDE Link MU
Software

In this section...

“Embedded IDE Link MU Components” on page 1-4
“Automation Interface” on page 1-4
“Project Generator” on page 1-5
“Verification” on page 1-5
“Configuring Embedded IDE Link MU and Green Hills® MULTI Software”
on page 1-6
“Configuring Green Hills® MULTI to use Full Directory Paths” on page 1-9

Embedded IDE Link MU Components
Embedded IDE Link MU software comprises these components

• Automation Interface — Enables communication between MATLAB and
Green Hills® MULTI® software.

• Project Generation — Uses Simulink to let you build models, simulate
them, and generate code from the models directly to the processor.

• Verification — Validate and verify your projects. You can simulate
algorithms and processes in Simulink models and concurrently on your
processor. Comparing the concurrent simulation results helps verify the
fidelity of your model or algorithm code.

Automation Interface
The Automation Interface component enables you to use MATLAB functions
and methods to communicate with the Green Hills MULTI IDE software.
With the MATLAB functions, you can perform the following program
development tasks:

• Automate project management.

• Debug projects by manipulating the data in the processor memory (internal
and external) and registers.

1-4

The Structure and Components of Embedded IDE Link™ MU Software

• Exercise functions from your project on the processor.

• Communicate between the host and processor applications.

The Automation Interface component provides the following functionality
in the Debug component—methods and functions for project automation,
debugging, and data manipulation.

Project Generator
The Project Generator component is a collection of methods that use the
Green Hills MULTI API to create projects in Green Hills MULTI and generate
code with Real-Time Workshop. With the interface, you can do the following:

• Automatic project-based build process — Automatically create and build
projects for code generated by Real-Time Workshop or Real-Time Workshop
Embedded Coder.

• Custom code generation — Use Embedded IDE Link MU software with
any Real-Time Workshop Embedded Coder System Target File (STF) to
generate both processor-specific and optimized code.

• Automatic downloading and debugging — Debug generated code in the
Green Hills MULTI debugger, using either the instruction set simulator or
real hardware.

• Create and build projects for Green Hills MULTI from Simulink models
— Project Generator uses Real-Time Workshop or Real-Time Workshop
Embedded Coder to build projects that work with supported processors.

• Generate custom code using the Configuration Parameters in your model
with the system target files multilink_ert.tlc and multilink_grt.tlc.

Verification
Verifying your processes and algorithms is an essential part of developing
applications. The components of Embedded IDE Link MU software provide
the following verification tools.

• Processor in the loop (PIL) cosimulation — Use cosimulation
techniques to verify generated code running in an instruction set simulator
or real hardware environment.

1-5

1 Getting Started

• Execution profiling — Gather execution profiling measurements with
Green Hills MULTI instruction set simulator to establish the timing
requirements of your algorithm.

Configuring Embedded IDE Link MU and Green Hills
MULTI Software
Embedded IDE Link MU software requires some information about your
MULTI installation before you can use the software to develop projects in
MULTI from MATLAB. To configure the interface between MATLABand
MULTI, provide the information in the following table. Embedded IDE Link
MU software provides a GUI-based configuration utility to help you configure
the software and interface.

GUI
Parameter

Configuration
Information

Description

Directory MULTI
installation
directory

Identifies the path to your Green Hills
software.

Configuration Primary
processor

Identifies the processor on which you
are developing.

Debug
server

Debug server
type

Specifies the type of debug server to use.

Host name Host name Specifies the name of the machine that
runs your Embedded IDE Link MU
service.

Port number Port number Specifies the port for communicating
with the host and Embedded IDE Link
MU service. The service listens on this
port.

Configuring Your Embedded IDE Link MU Software
You must configure your installation before you start working with the
software and MULTI.

To generate code for Blackfin processors, the software supports only the Green
Hills version of the Blackfin compiler.

1-6

The Structure and Components of Embedded IDE Link™ MU Software

Note The software does not support using Analog Devices™ Blackfin®
compiler. When you select your configuration during the configuration
process, do not select bfadi_standalone.tgt from the Configuration list.
bfadi_standalone.tgt uses the ADI compiler.

Follow these steps to open the Embedded IDE Link MU configuration utility:

Note You must perform this configuration process before using Embedded
IDE Link MU software.

1 Enter ghsmulticonfig at the MATLAB prompt.

The Embedded IDE Link MU Configuration dialog box opens, as shown in
the following figure.

2 In the Directory field, enter the path to the executable file multi.exe
for your Green Hills MULTI installation. Click Browse to search for the
file if necessary.

1-7

1 Getting Started

3 From the Configuration list, select your primary processor. Embedded
IDE Link MU software supports a variety of processors. Choose
one that matches your development platform. In many cases, the
processor_standalone.tgt variants, such as ppc_standalone.tgt, work
well. Refer to your Green Hills MULTI documentation for more information
about the configuration options for processors.

4 Enter the debug server string in Debug server. The string you enter
sets specific values for processors, such as the board support library and
whether the processor is big or little endian.

The standard input string is debugconnection. To use a processor
simulator, such as the MPC5554 simulator, enter the string

simppc -cpu=ppc5554 -fast -dec-rom_use_entry

as shown in the figure. Your MULTI documentation provides more
information about the debug server options and how to use them. You
can find more debug server string for simulators in the reference material
for ghsmulticonfig.

Note If you use a custom board, add the -bsp option to the Debug server
string to specify your processor. For example, add -bsp=mpc5554 if you use
the MPC5554 EVB.

5 In Host name, enter the name of the machine that is going to run the
Embedded IDE Link MU service. When you construct a ghsmulti object,
the ghsmulti function starts the Embedded IDE Link MU service. To
launch the service, the function needs to know where the service will
run. The Host name string identifies that location. The default value is
localhost, meaning the service runs on the local machine. No other input
is valid.

6 Enter the port number for the service in Port number.

Port number 4444 is the default port value. To change the port used, enter
a different value in this field. Verify that the port you enter is available. If
the port number you enter is not available, the Embedded IDE Link MU

1-8

The Structure and Components of Embedded IDE Link™ MU Software

service does not start. Thus, you get an error message in MATLAB when
you try to construct a ghsmulti object.

7 Select or clear Show server status window to specify whether the
Embedded IDE Link MU service status appears in the task bar. The
default value is to show the service status. Clearing Show server status
window hides the status in the task bar. Select this option as a best
practice. Keeping this option selected enables the software to shut down
the communication services for Green Hills MULTI completely.

8 Click OK to complete the configuration process and close the dialog box.

Configuring Green Hills MULTI to use Full Directory
Paths
When you install MULTI to use with the software, MULTI sets the Show
Paths option to use relative file paths. To ensure that projects and programs
build correctly, configure MULTI to use full directory paths. Follow these
steps to change the configuration in MULTI.

1 Start MULTI from your desktop.

2 Switch to the Project Manager tool.

3 Select View > Show Paths > Full Paths.

1-9

1 Getting Started

1-10

2

Automation Interface

• “Getting Started with Automation Interface” on page 2-2

• “Constructing Objects” on page 2-21

• “Properties and Property Values” on page 2-23

• “ghsmulti Object Properties” on page 2-27

2 Automation Interface

Getting Started with Automation Interface

In this section...

“Introducing the Automation Interface Tutorial” on page 2-2
“Starting and Stopping Green Hills MULTI From the MATLAB Desktop”
on page 2-5
“Running the Interactive Tutorial” on page 2-9
“Querying Objects for Green Hills MULTI Software” on page 2-9
“Loading Files into Green Hills MULTI Software” on page 2-11
“Visibility and MULTI” on page 2-12
“Running the Project” on page 2-13
“Working With Data in Memory” on page 2-13
“More Memory Data Manipulation” on page 2-16
“Closing the Connections to Green Hills MULTI Software” on page 2-19
“Tasks Performed During the Tutorial” on page 2-19

Introducing the Automation Interface Tutorial
Embedded IDE Link MU software provides a connection between MATLAB
software and a processor in Green Hills MULTI development environment.
You use MATLAB objects as a mechanism to control and manipulate a signal
processing application using the computational power of MATLAB software.
This approach can help you while you debug and develop your application.
Another possible use for automation is creating MATLAB scripts that verify
and test algorithms that run in their final implementation on your production
processor.

Note Before using the functions available with the objects, you must
designate a server and processor in Green Hills MULTI software. The object
you create is specific to the server and processor you specify.

2-2

Getting Started with Automation Interface

To help you start using objects in the software, Embedded IDE Link MU
software includes a tutorial—multilinkautointtutorial.m. As you work
through this tutorial, you perform the following tasks that step you through
creating and using objects to interact with the Green Hills MULTI IDE:

1 Select your primary server and port.

2 Create and query objects to Green Hills MULTI IDE.

3 Use MATLAB to load files into Green Hills MULTI IDE.

4 Work with your Green Hills MULTI IDE project from MATLAB.

5 Close the connections you opened to Green Hills MULTI IDE.

The tutorial covers some methods and functions for the software. The
following tables show functions and methods for the software. The functions
do not require an object. The methods require an existing ghsmulti object to
use as an input argument for the method.

Functions for Working with Green Hills MULTI
The following table shows functions that do not require an object.

Function Description

ghsmulti Construct an object that refers to a Green Hills
MULTI IDE instance. When you construct the
object you specify the IDE instance by host and
port.

ghsmulticonfig Set Embedded IDE Link MU software
preferences.

Methods for Working with ghsmulti Objects in Green Hills
MULTI
The following table presents some of the methods that require a ghsmulti
object.

2-3

2 Automation Interface

Methods Description

add Add file to project
address Return address and page for entry in symbol

table in Green Hills MULTI IDE
build Build project in Green Hills MULTI
cd Change working directory
connect Connect IDE to processor
display Display properties of object that references Green

Hills MULTI IDE
halt Terminate execution of process running on

processor
isrunning Test whether processor is executing process
load Load built project to processor
open Open file in project
read Retrieve data from memory on processor
regread Read values from processor registers
regwrite Write data values to registers on processor
reset Restore program counter (PC) to entry point for

current program.
restart Restore processor to program entry point
run Execute program loaded on processor
visible Set whether Green Hills MULTI IDE window is

visible on desktop while Green Hills MULTI IDE
is running

write Write data to memory on processor

Running Green Hills MULTI on Your Desktop — Visibility
When you create a ghsmulti object in the tutorial in the next section,
Embedded IDE Link MU software starts Green Hills MULTIin the
background.

2-4

Getting Started with Automation Interface

If Green Hills MULTI is running in the background, the IDE windows, such
as the editor and debugger, do not appear on your desktop. MULTI does
appear in your task bar and on the Applications page in the Task Manager.
It shows up as a process, IDE.exe, on the Processes tab in Task Manager.

You can make the Green Hills MULTI IDE visible with the function visible.
To close the IDE when it is not visible and MATLAB is not running, use the
Processes tab in Windows Task Manager and look for IDE.exe.

If an object that refers to Green Hills MULTI exists when you close Green
Hills MULTI, the application does not close. Windows moves it to the
background (it becomes invisible). Only after you clear all objects that access
Green Hills MULTI, or close MATLAB, does closing Green Hills MULTI
unload the application. You can see if Green Hills MULTI is running in the
background by checking in the Windows Task Manager or the task bar. When
Green Hills MULTI is running, the entry IDE.exe appears in the Image
Name list on the Processes tab.

Starting and Stopping Green Hills MULTI From the
MATLAB Desktop
Embedded IDE Link MU software

Embedded IDE Link MU software provides you the ability to control MULTI
software from the MATLAB command window. When you create a ghsmulti
object, MATLAB starts the services shown in the following table to enable
MATLAB to communicate with the Green Hills MULTI IDE:

Service Type for
Each Port

Process Name Description

Python Service mpythonrun.exe Python is a programming
language the software uses
to establish a connection
between MATLAB and
MULTI.

Python Service svc_python.exe Connection to IDE.
Python Service svc_router.exe Connection to IDE.

2-5

2 Automation Interface

Service Type for
Each Port

Process Name Description

Python Service svc_statemgr.exe Connection to IDE
Python Service svc_window.exe Connection to IDE.
Embedded IDE Link
MU service

Not applicable Enables MATLAB to send
commands to the Green
Hills MULTI development
environment. This is a child
process of the python services.

Each time you create a ghsmulti object, the software starts another set of the
python services shown in the table.

Starting Green Hills MULTI From MATLAB
When you use the ghsmulti function, the software starts two classes of
services—python services and the Embedded IDE Link MU service for each
new port. The entries in the following table describe how the software controls
the IDE when you create a ghsmulti object:

Create ghsmulti Object with ghsmulti
Function

Status
of IDE

Result

id=ghsmulti
Not
running

The software starts the Embedded
IDE Link MU service and the IDE
connects to the default host name and
port number—localhost and 4444 as
set in the configuration options.

id=ghsmulti('hostname','localhost','portnum',4444)

Not
running

The software starts the Embedded
IDE Link MU service and the IDE and
connects to the specified host name
and port number—localhost and
4444.

2-6

Getting Started with Automation Interface

Create ghsmulti Object with ghsmulti
Function

Status
of IDE

Result

id2=ghsmulti
Running The software connects to the existing

Embedded IDE Link MU service
connected to the default host name
and port.

id2=ghsmulti('hostname','localhost','portnum',4446)

Running The software starts a new the
Embedded IDE Link MU service
connected to the specified host name
and port number.

When the software starts the Embedded IDE Link MU service, the following
service dialog box appears on your desktop:

Information in the window provides details about the service. Clicking
Launcher opens the MULTI Launcher utility.

Stopping Green Hills MULTI From MATLAB
After you complete your development work with the software, best practice
suggests that you close the IDE from MATLAB. Two conditions control how
you close the IDE, as shown in the following table:

2-7

2 Automation Interface

The Embedded IDE Link MU
Service State

To Close the IDE

One or more services appear in the
task bar and the Embedded IDE
Link MU service dialog boxes are
visible.

Perform these steps:

1 Enter clear all in MATLAB to
remove the ghsmulti objects from
your workspace.

2 Verify that the MULTI clients are
no longer connected by checking
that #Clients in each service
dialog box is 0.

3 Close the service dialog boxes.
Services appear in the task bar
but the service dialog boxes are not
visible.

Perform these steps:

1 Enter clear all inMATLAB to
remove the ghsmulti objects from
your workspace.

2 Open the Microsoft®Windows
Task Manager.

3 Click Processes.

4 Select svc_router.exe from
the list. Closing this service
stops mpythonrun.exe,
svc_window.exe, and
svc_statemgr.exe.

5 Click End Now.

6 Select svc_python.exe from the
list.

7 Click End Now.

2-8

Getting Started with Automation Interface

Note Clicking the task bar icon for the service and selecting close does not
close the IDE correctly.

Running the Interactive Tutorial
You have the option of running this tutorial from the MATLAB command line
or entering the functions as described in the following tutorial sections.

To run the tutorial in MATLAB, click run multilinkautointtutorial. This
command launches the tutorial in an interactive mode where the tutorial
program provides prompts and text descriptions to which you respond to move
to the next section. The interactive tutorial covers the same information
provided by the following tutorial sections. You can view the tutorial M-file
used here by clicking multilinkautointtutorial.m.

Querying Objects for Green Hills MULTI Software
In this tutorial section you create the connection between MATLAB and
Green Hills MULTI IDE. This connection, or ghsmulti object, is a MATLAB
object that you save as variable id. You use function ghsmulti to create
ghsmulti objects. ghsmulti supports input arguments that let you specify
values for ghsmulti object properties, such as the global timeout. Refer to the
ghsmulti reference information for more about the input arguments.

Use the generated object id to direct actions to your project and processor. In
the following tasks, id appears in all method syntax that interact with the
IDE primary target and the processor: The object id identifies and refers to a
specific instance of the IDE.

You must include the object in any method syntax you use to access and
manipulate a project or files in a session in Green Hills MULTI software:

1 Create an object that refers to your selected service and port. Enter the
following command at the prompt.

id = ghsmulti('hostname','localhost','portnum',4444)

If you watch closely, and your machine is not too fast, you see Green Hills
MULTI appear briefly when you call ghsmulti. If Green Hills MULTI

2-9

2 Automation Interface

was not running before you created the new object, Green Hills MULTI
launches and runs in the background.

Usually, you need to interact with Green Hills MULTI while you develop
your application. The function visible, controls the state of Green Hills
MULTI on your desktop. visible accepts Boolean inputs that make
Green Hills MULTI either visible on your desktop (input to visible ≥ 1)
or invisible on your desktop (input to visible = 0). For this tutorial, you
need to interact with the development environment, so use visible to
set the IDE visibility to 1.

2 To make Green Hills MULTI show on your desktop, enter the following
command at the command prompt:

visible(id,1)

3 Next, enter display(id) at the prompt to see the status information.

MULTI Object:
Host Name : localhost
Port Num : 4444
Default timeout : 10.00 secs
MULTI Dir : C:\ghs\multi500\ppc\

Embedded IDE Link MU software provides three methods to read the
status of a processor:

• info— Return a structure of testable session conditions.

• display— Print information about the session and processor.

• isrunning— Return the state (running or halted) of the processor.

4 Verify that the processor is running by entering

runstatus = isrunning(id)

The MATLAB prompt responds with message that indicates the processor
is stopped:

runstatus =

0

2-10

Getting Started with Automation Interface

Loading Files into Green Hills MULTI Software
You have established the connection to a processor and board. Using three
methods you learned about the hardware, whether it was running, its type,
and whether Green Hills MULTI IDE was visible. Next, give the processor
something to do.

In this part of the tutorial, you load the executable code for the CPU in the
IDE. Embedded IDE Link MU software includes a tutorial project file for
Green Hills MULTI. Through the next commands in the tutorial, you locate
the tutorial project file and load it into Green Hills MULTI. The open method
directs Green Hills MULTI to load a project file or workspace file.

Note To continue the tutorial, you must identify or create a directory to
which you have write access. Embedded IDE Link MU software cannot create
a directory for you. Create one in the Microsoft Windows directory structure
before you proceed with the this tutorial.

Green Hills MULTI has its own workspace and workspace files that are
quite different from MATLAB workspace files and the MATLAB workspace.
Remember to monitor both workspaces. To change the working directory to
your writable directory:

1 Use cd to switch to the writable directory

prj_dir=cd('C:\ide_link_mu_demo')

where the name and path to the writable directory is a string,
such as C:\ide_link_mu_demo as used in the example. Replace
C:\ide_link_mu_demo with the full path to your writable directory.

2 Change your working directory to the new directory by entering the
following command:

cd(id,prj_dir)

3 Use the following command to create a new Green Hills MULTI project
named debug_demo.gpj in the new directory:

2-11

2 Automation Interface

new(id,'debug_demo.gpj')

Switch to the IDE to verify that your new project exists. Next, add source
files to your project.

4 Add the provided source file—multilinkautointtutorial.c to the project
debug_demo.gpj using the following command:

add(id,'multilinkautointtutorial')

5 Save your project.

save(id,'my_debug_demo.gpj','project')

Your IDE project is saved with the name my_debug_demo.gpj in your
writable directory. The input string ’project’ specifies that you are saving
a project file.

6 Next, set the build options for your project. Use the following command to
set the compiler build options to use and specify a processor (optional).

setbuildopt(id,'Compiler','-G',-cpu=V850)

The input argument -cpu=V850 is optional to specify the processor. Change
to processor designation to match your processor if necessary.

Visibility and MULTI
If MULTI is not running on your desktop when you create the multilink
object, Embedded IDE Link MU software starts MULTI and then configures
it to run in the background. Verify that MULTI is running by checking that
MULTI appears on your task bar

Usually you need to interact with the IDE, so Embedded IDE Link MU
software provides a function called visible that controls whether MULTI is
visible. visible takes the following Boolean input argument:

• 0 hides the IDE on your desktop. It appears on the task bar.

• 1 makes all components of the IDE visible on your desktop.

The remainder of this tutorial requires that you interact with the IDE.

2-12

Getting Started with Automation Interface

visible(id,1) % Make the IDE visible on the desktop.

Running the Project
After you create dot_project_c.gpj in the IDE, you can use Embedded IDE
Link MU software functions to create executable code from the project and
load the code to the processor.

To build the executable and download and run it on your processor:

1 Use the following build command to build an executable module from the
project debug_demo.gpj.

build(id,'all',20) % Set optional time-out period to 20 seconds.

2 To load the new executable to the processor, use load with the project file
name and the object name. The name of the executable is debug_demo.

load(id,'debug_demo',30); % Set time-out value to 30 seconds.

Embedded IDE Link MU software provides methods to control processor
execution—run, halt, and reset. To demonstrate these methods, use run to
start the program you just loaded on to the processor, and then use halt
to stop the processor.

1 Enter the following methods at the command prompt and review the
response in the MATLAB command window.

run(id) % Start the program running on the processor.

halt(id) % Halt the processor.

reset(id) % Reset the program counter to start of program.

Use isrunning after the runmethod to verify that the processor is running.
After you stop the processor, isrunning can verify that the processor has
stopped.

Working With Data in Memory
Embedded IDE Link MU software provides methods that enable you to read
and write data to memory on the processor. Reading and writing data depends
on the symbol table for your project. The symbol table is available only after
you load the executable into the debugger. This sections introduces address

2-13

2 Automation Interface

and dec2hex. Use them to read the addresses of two global variables—ddat
and idat.

1 After you load debug_demo into the debugger, enter the following commands
to read the addresses of ddat and idat:

ddatA=address(id,'ddat')
ddatA =

3145744 0

ddatI=address(id,'idat')

ddatI =

3145728 0

2 Review the results in hexadecimal representation.

dec2hex(ddatA)

ans =

300010
000000

dec2hex(ddatI)

ans =

300000
000000

After you load the target code to the processor, you can examine and modify
data values in memory, as the previous read function examples demonstrated.

For non-changing data values in memory (static values), the values are
available immediately after you load the program file.

2-14

Getting Started with Automation Interface

A more interesting case is looking at variable values that change during
program execution. Manipulating changing data values at intermediate points
during execution can provide helpful analysis and verification information.

To enable you to read and write data while your program is running, the
software provides methods to insert and delete breakpoints in the source
programs. Inserting breakpoints lets you pause program execution to read or
change variable data values. You cannot change values while your program is
running.

The method insert creates a new breakpoint at either a source file locations,
such as a line number, or at a physical memory address. insert takes either
the line number or the address as an input argument.

To read the values in the next section of this tutorial, use the following
methods to insert breakpoints at lines 24 and 29 in the source file
multilinkautointtutorial.c

1 Change directories to your original working directory.

cd(id,proj_dir);

2 (Optional for convenience) Create variables for the line numbers in the
source file.

brkpt24 = 24;
brtpt29 = 29;

3 Use the following commands to insert breakpoints on line 24 and line 29
of the source file:

insert(id,'multilinkautointtutorial',brkpt24); % Insert breakpoint on line 24.

insert(id,'multilinkautointtutorial',brkpt29); % Insert breakpoint on line 29.

4 Open and activate the file in the IDE from the MATLAB command window
by issuing the following commands:

open(id,'multilinkautointtutorial');

activate(id,'multilinkautointtutorial');

2-15

2 Automation Interface

Activating multilinkautointtutorial.c transfers focus in the IDE to the
activated file. Switch to the IDE to verify that the file is in your project
and open.

When you look in the IDE debugger window, the breakpoints you added to
multilinkautointtutorial.c are marked by a STOP sign icon on lines 24
and 29.

A similar method, remove, deletes breakpoints.

To help you inspect the source file in the IDE and verify the breakpoints, the
open and activate methods display the file multilinkautointtutorial.c
in the IDE and force the source file to the front.

One final method actually connects the IDE to your hardware or simulator.
connect takes a ghsmulti object as an input argument to connect the specific
IDE primary target referenced by id to the associated processor.

More Memory Data Manipulation
The source file multilinkaautointtutorial.c defines two 1-by-4 global
data arrays—ddat and idat. You can locate the declaration in the file.
Embedded IDE Link MU software provides the read and write methods so
you can access the arrays from MATLAB. Find the declaration and note the
initialization values.

This tutorial section demonstrates reading and writing data in memory, and
controlling the processor.

1 Get the address of the symbols ddat and idat. Enter the following
commands at the prompt.

ddat_addr=address(id,'ddat'); % Get address from symbol table.
idat_addr=address(id,'idat');

2 Create two MATLAB variables to specify the data types for ddat and idat.

ddat_type-'double';
idat_type='int32';

3 Declare some values in two MATLAB variables.

2-16

Getting Started with Automation Interface

ddat_value=double([pi 12.3 exp(-1) sin(pi/4)]);
idat_value=int32(1:4);

4 Stop the processor.

halt(id)

5 Reload the project. If you did not save the source file in the project,
reloading the project removes the breakpoints you added and move the
program counter (PC) to the start of the program.

% Reload program file (.gpj). Reset PC to program start.
reload(id,100);

6 Use the following commands to restore the breakpoints on line 24 and 29.

insert(id,'multilinkautointtutorial.c',brkpt24);
insert(id,'multilinkautointtutorial.c',brkpt29);

7 Use the following method to connect the IDE to the processor:

connect(id);

8 With the breakpoints in the code, run the program until it stops at the
first breakpoint on line 24.

run(id,'runtohalt',30); % Set time-out to 30 seconds.

9 Check the current values stored in ddat and idat. Later in this tutorial
you change these values from MATLAB.

% Do ddat values match initialization values in the source?
ddatV=read(id,address(id,'ddat',ddat_type,4)
idatV=read(id,address(id,'idat',idat_type,4)

MMATLAB displays the values of ddatV and idatV.

ddatV=

16.300 -2.1300 5.1000 11.8000

idatV=

2-17

2 Automation Interface

1 508 646 7000

10 Change the values in ddat and idat by writing new values to the memory
addresses.

% Write pi, 12.3, exp(-1), and .7070 to memory.
write(id,address(id,'ddata'),ddat_value)
% Write vector [1:4] to memory.
write(id,address(id,'idat'),idat_value)

11 Resume the program execution from the breakpoint and run until the
program stops.

run(id,'runtohalt','30); % Stop at next breakpoint (line 29).

12 Read the values in memory for ddat and idat to verify the changes.

% Read the data as double data type.

ddatV = read(id,address(id(id,'ddat'),ddat_type,4)

ddatV=

3.1416 12.3000 0.3679 0.7071

% Read the data as int32 data type.

idatV = read(id,address(id,'idat'),idat_type,4)

idatV=

1 2 3 4

The data stored in ddat and idat are what you wrote to memory.

13 After you review the data, restart the processor to run to return the PC
to the program start.

restart(id);

2-18

Getting Started with Automation Interface

Closing the Connections to Green Hills MULTI
Software
Objects that you create in Embedded IDE Link MU software have connections
to Green Hills MULTI IDE. Until you delete these objects, the Green Hills
MULTI process (Idde.exe in the Windows Task Manager) remains in
memory. Closing MATLAB removes these objects automatically, but there
may be times when it helps to delete the handles manually, without quitting
MATLAB.

Note When you clear the last ghsmulti object, the software does not close
the running Embedded IDE Link MU service. When it does close the IDE,
it does not save current projects or files in the IDE, and it does not prompt
you to save them.

A best practice is to save your projects and files before you clear ghsmulti
objects from your MATLAB workspace.

Use the following commands to close the project files in Green Hills MULTI
IDE and remove the breakpoints you added to the source file.

close(id,'debug_demo.gpj','project') % Close the project file.
visible(id,1) % Make MULTI visible.
remove(id,'multilinkautointtutorial.c',brkpt24);

remove(id,'multilinkautointtutorial.c',brkpt29);

Finally, to delete your link to Green Hills MULTI use clear id.

You have completed the Automation Interface tutorial using Embedded IDE
Link MU software.

Tasks Performed During the Tutorial
During the tutorial you performed the following tasks:

1 Created and queried objects that refer to a session in Embedded IDE Link
MU software to get information about the session and processor.

2-19

2 Automation Interface

2 Used MATLAB software to load files into the Green Hills MULTI IDE and
used methods in MATLAB software to run that file.

3 Closed the links you opened to Green Hills MULTI software.

This set of tasks is used in any development work you do with signal
processing applications. Thus, the tutorial gives you a working process for
using Embedded IDE Link MU software and your signal processing programs
to develop programs for a range of processors.

2-20

Constructing Objects

Constructing Objects
When you create a connection to a session in Green Hills MULTI using the
ghsmulti function, you create a ghsmulti object (in object-oriented design
terms, you instantiate the ghsmulti object). The object implementation relies
on MATLAB object-oriented programming capabilities like the objects in
MATLAB or Filter Design Toolbox™ software.

The discussions in this section apply to the objects in Embedded IDE Link MU
software. Because ghsmulti objects use the MATLAB software techniques,
the information about working with the objects, such as how you get or set
object properties or use methods, apply to the ghsmulti objects in Embedded
IDE Link MU software.

Like other MATLAB structures, ghsmulti objects have predefined fields
referred to as object properties.

You specify object property values by the following methods:

• Specifying the property values when you create the object

• Creating an object with default property values, and changing some or all
of these property values later

For examples of setting link properties, refer to “Setting Property Values
with set”.

Example — Constructor for ghsmulti Objects
The easiest way to create an object is to use the function ghsmulti to create
an object with the default properties. Create an object named id referring to a
session in Green Hills MULTI by entering the following syntax:

id = ghsmulti

MATLAB responds with a list of the properties of the object id you created
along with the associated default property values.

MULTI Object:
Host Name : localhost
Port Num : 4444

2-21

2 Automation Interface

Default timeout : 10.00 secs
MULTI Dir : C:\ghs\multi500\ppc\

The object properties are described in the ghsmulti documentation.

Note These properties are set to default values when you construct links.

2-22

Properties and Property Values

Properties and Property Values

In this section...

“Working with Properties” on page 2-23
“Setting and Retrieving Property Values” on page 2-23
“Setting Property Values Directly at Construction” on page 2-24
“Setting Property Values with set” on page 2-24
“Retrieving Properties with get” on page 2-25
“Direct Property Referencing to Set and Get Values” on page 2-25
“Overloaded Functions for ghsmulti Objects” on page 2-26

Working with Properties
Links (or objects) in this Embedded IDE Link MU software have properties
associated with them. Each property is assigned a value. You can set the
values of most properties, either when you create the link or by changing the
property value later. However, some properties have read-only values. Also, a
few property values, such as the board number and the processor to which
the link attaches, become read-only after you create the object. You cannot
change those after you create your link.

Setting and Retrieving Property Values
You can set ghsmulti object property values by either of the following
methods:

• Directly when you create the link — see “Setting Property Values Directly
at Construction”

• By using the set function with an existing link — see “Setting Property
Values with set”

Retrieve ghsmulti object property values with the get function.

Direct property referencing lets you either set or retrieve property values
for ghsmulti objects.

2-23

2 Automation Interface

Setting Property Values Directly at Construction
To set property values directly when you construct an object, include the
following entries in the input argument list for the constructor method
ghsmulti:

• A string for the property name to set, followed by a comma. Enclose the
string in single quotation marks as you do any string in MATLAB.

• The property value to associate with the named property. Sometimes this
value is also a string.

You can include as many property names in the argument list for the object
construction command as there are properties to set directly.

Example — Setting Link Property Values at Construction
Create a connection to an instance of the IDE in Green Hills MULTI software
and set the following object properties:

• Link to the specified MULTI instance and host.

• Specify the communication port on the host.

• Set the global timeout to 5 s. The default is 10 s.

Set these properties when you construct the object by entering

id = ghsmulti('hostname','localhost','portnum',4444,'timeout',5);

The localhost, portnum, and timeout properties are described in Link
Properties, as are the other properties for links.

Setting Property Values with set
After you construct an object, the set function lets you modify its property
values.

Using the set function, you can Set link property values.

2-24

Properties and Property Values

Example — Setting Link Property Values Using set
To set the timeout specification for the link id from the previous section,
enter the following syntax:

set(id,'timeout',8);

get(id,'timeout');
ans=

8

The display reflects the changes in the property values.

Retrieving Properties with get
You can use the get command to retrieve the value of an object property.

Example — Retrieving Link Property Values Using get
To retrieve the value of the hostnameproperty for id, and assign it to a
variable, enter the following syntax:

host=get(id,'hostname')

host =

localhost

Direct Property Referencing to Set and Get Values
You can directly set or get property values using MATLAB structure-like
referencing. Do this by using a period to access an object property by name,
as shown in the following example.

Example — Direct Property Referencing in Links
To reference an object property value directly, perform the following steps:

1 Create a link with default values.

2 Change its time out and number of open channels.

2-25

2 Automation Interface

id = ghsmulti;
id.time = 6;

Overloaded Functions for ghsmulti Objects
Several methods and functions in Embedded IDE Link MU software have
the same name as functions in other MathWorks products. These functions
behave similarly to their original counterparts, but you apply them to an
object. This concept of having functions with the same name operate on
different types of objects (or on data) is called overloading of functions.

For example, the set command is overloaded for objects. After you specify
your object by assigning values to its properties, you can apply the methods
in this toolbox (such as address for reading an address in memory) directly
to the variable name you assign to your object. You do not have to specify
your object parameters again.

For a list of the methods that act on ghsmulti objects, refer to the Chapter 6,
“Functions — Alphabetical List” in the function reference pages.

2-26

ghsmulti Object Properties

ghsmulti Object Properties

In this section...

“Quick Reference to ghsmulti Properties” on page 2-27
“Details About ghsmulti Object Properties” on page 2-27

Quick Reference to ghsmulti Properties
The following table lists the properties for the links in Embedded IDE Link
MU software. The second column indicates to which object the property
belongs. Knowing which property belongs to each object in an interface tells
you how to access the property.

Property
Name User Settable? Description

hostname At construction
only

Reports the name of the host the
Embedded IDE Link MU service in
Green Hills MULTI that the object
references.

portnum At construction
only

Stores the number of the port to
communicate with MULTI.

timeout Yes/default Contains the global timeout setting for
the link.

Some properties are read only. Thus, you cannot set the property value.
Other properties you can change at any time. If the entry in the User Settable
column is “At construction only,” you can set the property value only when
you create the object. Thereafter, it is read only.

Details About ghsmulti Object Properties
To use the objects for Green Hills MULTI interface, set values for the
following:

• hostname— Specify the session with which the object interacts.

2-27

2 Automation Interface

• portnum— Specify the processor in the session. If the board has multiple
processors, procnum identifies the processor to use.

• timeout— Specify the global timeout value. (Optional. Default is 10 s.)

Details of the properties associated with ghsmulti objects appear in the
following sections, listed in alphabetical order by property name.

hostname
Property hostname identifies the host that is running the Embedded IDE Link
MU service. Use hostname to specify the machine to host your service.

To work with a service, you need the hostname and portnum values. Hostname
supports the string localhost only.

portnum
Property portnum specifies the port for communicating with the Embedded
IDE Link MU service. MATLAB uses sockets to communicate with Green
Hills MULTI. The portnum property value specifies the port, with a default
value of 4444. When you create a new ghsmulti object, Embedded IDE Link
MU software assumes the port value is 4444 unless you enter a different
value when you configure the software or use the portnum input argument
with ghsmulti.

timeout
Property timeout specifies how long Green Hills MULTI waits for any process
to finish. You set the global timeout when you create an object for a session
in Green Hills MULTI. The default global timeout value 10 s. The following
example shows the timeout value for object id2.

display(id2)

MULTI Object:
Host Name : localhost
Port Num : 4444
Default timeout : 10.00 secs
MULTI Dir : C:\ghs\multi500\ppc\

2-28

3

Project Generator

• “Introducing Project Generator” on page 3-2

• “Using the Embedded IDE Link MU Blockset” on page 3-3

• “Project Generator Tutorial” on page 3-10

• “Code Generation Options for Supported Processors” on page 3-19

• “Setting Real-Time Workshop Category Options” on page 3-22

• “Schedulers and Timing” on page 3-35

• “Optimizing Embedded Code with Target Function Libraries” on page 3-61

• “Model Reference and Embedded IDE Link MU Software” on page 3-68

3 Project Generator

Introducing Project Generator
Project generator provides the following features for developing projects and
generating code:

• Automated project building for Green Hills MULTI that lets you create
MULTI projects from code generated by Real-Time Workshop and
Real-Time Workshop Embedded Coder. Project generator populates
projects in the MULTI development environment.

• Blocks in the library multilinklib for controlling the scheduling and
timing in generated code.

• Highly configurable code generation using model configuration parameters
and target preferences block options.

• Ability to use Embedded IDE Link MU software with one of two system
target files to generate code specific to your processor.

• Highly configurable project build process.

• Automatic downloading and running of your generated projects on your
processor.

To configure your Simulink models to use the Project Generator component,
do one or both of the following tasks:

• Add a Target Preferences block from the Embedded IDE Link MU blockset
(multilinklib) to the model.

• To use the asynchronous scheduler capability in Embedded IDE Link
MU software, add a hardware interrupt block or idle task block from the
blockset multilinklib.

The following sections describe the blockset and the blocks in it, the scheduler,
and the Project Generator component.

3-2

Using the Embedded IDE Link™ MU Blockset

Using the Embedded IDE Link MU Blockset
Embedded IDE Link MU block library multilinklib comprises block
libraries that contain blocks designed for generating projects for specific
processors. The following table describes these libraries.

Library Description

Blackfin DSP Support
(multilinklib_blackfin)

Block for task scheduling on Analog Devices
Blackfin processors

Core Support
(multilinklib_coresupport)

Blocks for task scheduling and
manipulating memory on supported
processors

Target Preferences
(multilinklib_tgtprefs)

Block that configures models for supported
processors

MPC5500 Support
(multilinklib_mpc5500)

Block for task scheduling on Freescale
MPC5500 processors

MPC7400 Support
(multilinklib_mpc7400)

Block for task scheduling on Freescale
MPC7400 processors

Blocks for the processor families are almost identical. Each block has a
reference page that describes the options for the block. Use the Help browser
to get more information about a block shown in any of the following figures.

The first figure shows the main library of libraries in Embedded IDE Link
MU software.

3-3

3 Project Generator

3-4

Using the Embedded IDE Link™ MU Blockset

The next figure shows the Blackfin Support library.

The Core Support library contains the blocks shown in the next figure.

3-5

3 Project Generator

The target preferences library for all supported processors appears in the
next figure.

3-6

Using the Embedded IDE Link™ MU Blockset

The MPC5500 Support library appears in the next figure.

3-7

3 Project Generator

The MPC7400 Support Library appears in the next figure.

3-8

Using the Embedded IDE Link™ MU Blockset

3-9

3 Project Generator

Project Generator Tutorial

In this section...

“Process for Building and Generating a Project” on page 3-10
“Create the Model” on page 3-11
“Adding the Target Preferences Block to Your Model” on page 3-12
“Specifying Simulink Configuration Parameters for Your Model” on page
3-15
“Creating Your Project” on page 3-17

Process for Building and Generating a Project
In this tutorial, you build a model and generate a project from the model into
Green Hills MULTI.

Note The model shows project generation only. You cannot build and run
the model on your processor without additional blocks.

To generate a project from a model, complete the following tasks:

1 Use Simulink blocks, Signal Processing Blockset blocks, and blocks from
other blocksets to create the model application.

2 Add the target preferences block from the Embedded IDE Link MU Target
Preferences library to your model.

3 Double-click the Target Preferences block to open the block dialog box.

4 Select your processor from the Processor list. Verify and set the block
parameters for your hardware, such as CPU clock and the options on the
Memory and Section panes. In most cases, the default settings for the
selected processor work fine.

5 Set the configuration parameters for your model, including the following
parameters:

3-10

Project Generator Tutorial

• Solver parameters such as simulation start and solver options. Choose
the discrete solver.

• Real-Time Workshop options such as processor configuration and
processor compiler selection

6 Generate your project.

7 Review your project in MULTI.

Create the Model
To build the model for this tutorial, follow these steps:

1 Start Simulink.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

3 Use Simulink blocks and Signal Processing Blockset blocks to create the
following model.

Look for the Integer Delay block in the Discrete library of Simulink and the
Gain block in the Commonly Used Blocks library. This model implements
an audio signal reverberation scheme. Part of the input audio signal passes
directly to the output. A delayed version passes through a feedback loop
before reaching the output. The result is an echo, or reverberation, added
to the audio output.

3-11

3 Project Generator

4 Save your model with a suitable name before continuing.

Adding the Target Preferences Block to Your Model
So that you can configure your model to work with the supported processors,
the software includes the Target Preferences block library. The library
contains the Custom Board block that you use to configure models for any
of the supported processors.

Entering multilinklib_tgtpref at the MATLAB prompt opens this window
showing the block library. This block library is included in the Embedded IDE
Link MU multilinklib blockset in the Simulink Library browser.

3-12

Project Generator Tutorial

To add the Target Preferences block to your model, follow these steps:

1 Double-click Embedded IDE Link MU in the Simulink Library browser to
open the multilinklib blockset.

2 Double-click the library Target Preferences to see the Custom Board block.

3 Drag and drop the Custom Board block to your model as shown in the
following figure.

3-13

3 Project Generator

4 Double-click the Custom Board block to open the block dialog box.

5 In the Block dialog box, select your processor from the Processor list.

6 Check the CPU clock value and change it if necessary to match your
processor clock rate.

7 Review the settings on the Memory and Sections tabs to verify that they
are correct for the processor you selected.

8 Click OK to close the Target Preferences dialog box.

You have completed the model. Next, configure the model configuration
parameters to generate a project in Green Hills MULTI from your model.

3-14

Project Generator Tutorial

Specifying Simulink Configuration Parameters for
Your Model
The following sections describe how to configure the build and run parameters
for your model. Generating a project, or building and running a model on
the processor, starts with configuring model options in the Configuration
Parameters dialog box in Simulink.

Setting Solver Options
After you have designed and implemented your digital signal processing
model in Simulink, complete the following steps to set the configuration
parameters for the model:

1 Open the Configuration Parameters dialog box and set the appropriate
options on the Solver category for your model and for Embedded IDE Link
MU software.

• Set Start time to 0.0 and Stop time to inf (model runs without
stopping). If you set a stop time, your generated code does not honor the
setting. Set this parameter to inf for completeness.

• Under Solver options, select the fixed-step and discrete settings
from the lists.

• Set the Fixed step size to Auto and the Tasking Mode to Single
Tasking.

Note Generated code does not honor Simulink stop time from the simulation.
Stop time is interpreted as inf. To implement a stop in generated code, you
must put a Stop Simulation block in your model.

Ignore the Data Import/Export, Diagnostics, and Optimization categories
in the Configuration Parameters dialog box. The default settings are correct
for your new model.

Setting Real-Time Workshop Code Generation Options
To configure Real-Time Workshop software to use the correct processor files,
compile your model, and run your model executable file, set the options in the

3-15

3 Project Generator

Real-Time Workshop category of the model Configuration Parameters. Follow
these steps to set the Real-Time Workshop software options to generate code
tailored for your processor:

1 Select Real-Time Workshop on the Select tree.

2 In Target selection, click Browse to select the appropriate system target
file for code generation—multilink_grt.tlc or multilink_ert.tlc (if
you use Real Time Workshop Embedded Coder software). The correct
target file might already be selected.

Clicking Browse opens the System Target File Browser to allow you to
change the system target file.

3 On the System Target File Browser, select the proper system target file
multilink_grt.tlc or multilink_ert.tlc, and click OK to close the
browser.

Setting Embedded IDE Link MU Code Generation Options
After you set the Real-Time Workshop options for code generation, set the
options that apply to your Embedded IDE Link MU software run-time and
build processes.

1 From the Select tree, choose Embedded IDE Link MUto specify code
generation options that apply to the processor.

2 Set the following Runtime options:

• Build action: Create_project.

• Interrupt overrun notification method: Print_message.

3 (optional) Under Link Automation, verify that Export MULTI link
handle to base workspace is selected and provide a name for the handle
in MULTI link handle name.

4 Set the following options in the dialog box under Project options:

• Set Compiler options string to blank.

5 Under Code Generation, select the Inline run-time library functions
option. Clear all other options.

3-16

Project Generator Tutorial

6 Change the category on the Select tree to Hardware Implementation.

7 Verify that the Device type is the correct value for your processor—Analog
Devices, NEC, or Freescale.

You have configured the Real-Time Workshop options that let you generate
a project for your processor. A few Real-Time Workshop categories on the
Select tree, such as Comments, Symbols, and Optimization do not require
configuration for use with Embedded IDE Link MU software. In some cases,
set options in the other categories to configure other code generation features.

For your new model, the default values for the options in these categories are
correct. For other models you develop, setting the options in these categories
provides more information during the build process. Some of the options
configure the model to run TLC debugging when you generate code. Refer to
your Simulink and Real-Time Workshop documentation for more information
about setting the configuration parameters.

Creating Your Project
After you set the configuration parameters and configure Real-Time Workshop
to create the files you need, you direct Real-Time Workshop to create your
project:

1 Click OK to close the Configuration Parameters dialog box.

2 To verify that you configured your Embedded IDE Link MU software
correctly, issue the following command at the prompt to open the Embedded
IDE Link MU Configuration dialog box.

ghsmulticonfig

3 Verify the settings in the Embedded IDE Link MU dialog box.

4 After you verify the settings, click OK to close the dialog box.

5 Enter cd at the prompt to verify that your working directory is the right
one to store your project results.

6 Click Incremental Build () on the model toolbar to generate your
project into Green Hills MULTI IDE.

3-17

3 Project Generator

When you press with Create_project selected for Build action, the
build process starts the Green Hills MULTI application and populates a
new project.

3-18

Code Generation Options for Supported Processors

Code Generation Options for Supported Processors
If the model contains continuous-time states, set the fixed-step solver step
size and specify an appropriate fixed-step solver before you generate code. At
this time, select an appropriate sample rate for your system. Refer to the
Real-Time Workshop User’s Guide for additional information.

Note Embedded IDE Link MU software does not support continuous states
in Simulink models for code generation. In the Solver options in the
Configuration Parameters dialog box, select Discrete (no continuous
states) as the Type, along with Fixed step.

To open the Configuration Parameters dialog box for your model, select
Simulation > Configuration Parameters from the menu bar.

The following figure shows the Real-Time Workshop Select tree categories
when you are using Embedded IDE Link MU software.

3-19

3 Project Generator

In the Select tree, the categories provide access to the options you use to
control how Real-Time Workshop software builds and runs your model. The
first categories in the tree under Real-Time Workshop apply to all Real-Time
Workshop targets and always appear on the list.

One category under Real-Time Workshop is specific to Embedded IDE Link
MU software and appears when you select either the multilink_grt.tlc or
multilink_ert.tlc system target file.

When you select your target file in Target Selection on the Real-Time
Workshop pane, the categories change in the tree.

For Embedded IDE Link MU software, the target file to select is
multilink_grt.tlc. Selecting either the multilink_grt.tlc or
multilink_ert.tlc adds categories to the Select tree that are specific

3-20

Code Generation Options for Supported Processors

to generating code with Embedded IDE Link MU software. The
multilink_grt.tlc file is appropriate for all projects.

Select multilink_ert.tlc when you are developing projects or code for
embedded processors (requires Real-Time Workshop Embedded Coder
software) or you plan to use Processor-in-the-Loop features (requires
Real-Time Workshop Embedded Coder software).

The following sections describe each Real-Time Workshop category and the
options available in each.

3-21

3 Project Generator

Setting Real-Time Workshop Category Options

In this section...

“About Select Tree Category Options” on page 3-22
“Target Selection” on page 3-23
“Build Process” on page 3-24
“Custom Storage Class” on page 3-24
“Report Options” on page 3-25
“Debug Pane Options” on page 3-25
“Optimization Pane Options” on page 3-26
“Embedded IDE Link MU Pane Options” on page 3-28
“Overrun Indicator and Software-Based Timer” on page 3-34

About Select Tree Category Options
Use the options in the Select tree under Real-Time Workshop to perform the
following configuration tasks:

• Specify your processor

• Configure your build process.

• Specify whether to use custom storage classes.

When you select one of the Embedded IDE Link MU system target files, the
Embedded IDE Link MU category appears in the Select tree as shown in
the following figure.

3-22

Setting Real-Time Workshop® Category Options

Target Selection
The following parameter enables you to select your system target file to
support code generation with Embedded IDE Link MU software.

System target file
Clicking Browse opens the Target File Browser where you select
multilink_grt.tlc as your Real-Time Workshop System target file for
Embedded IDE Link MU software. When you select the target file, Real-Time
Workshop disables the makefile configuration options. Embedded IDE Link
MU software does not use makefiles. The software creates and uses MULTI
projects directly.

If you are using Real-Time Workshop Embedded Coder software, select the
multilink_ert.tlc target file in System target file.

3-23

3 Project Generator

Build Process
Embedded IDE Link MUsoftware does not use makefiles or the build process
to generate code. Parameters in this group are not used.

Custom Storage Class
Use the parameter in this group to specify whether to use custom storage
classes. For more information about custom storage classes, refer to the
Real-Time Workshop documentation.

Ignore custom storage classes
When you generate code from a model that uses custom storage classes (CSC),
clear Ignore custom storage classes. This setting is the default value for
Embedded IDE Link MU software and for Real-Time Workshop Embedded
Coder software.

When you select Ignore custom storage classes, storage class attributes
and signals are affected in the following ways:

• Objects with CSCs are treated as if you set their storage class attribute
to Auto.

• The storage class of signals that have CSCs does not appear on the signal
line, even when you select Storage class from Format > Port/Signals
Display in your Simulink menus.

Ignore custom storage classes lets you switch to a processor that does
not support CSCs, such as the generic real-time target (GRT), without
reconfiguring your parameter and signal objects.

Generate code only
The Generate code only option does not apply to targeting with Embedded
IDE Link MU software. To generate source code without building and
executing the code on your processor, select Embedded Embedded IDE Link
MU from the Select tree. Then, under Runtime, select Create_project for
Build action.

3-24

Setting Real-Time Workshop® Category Options

Report Options
Two options control HTML report generation during code generation.

• “Create Code Generation report” on page 3-25

• “Launch report automatically” on page 3-25

Create Code Generation report
After you generate code, this option tells the software whether to generate
an HTML report that documents the C code generated from your model.
When you select this option, Real-Time Workshop writes the code
generation report files in the html subdirectory of the build directory. The
top-level HTML report file is named modelname_codegen_rpt.html or
subsystemname_codegen_rpt.html. For more information about the report,
refer to the online help for Real-Time Workshop. You can also use the
following command at the MATLAB prompt to get more information.

docsearch 'Create code generation report'

In the Navigation options, when you select Model-to-code and
Code-to-model, your HTML report includes hyperlinks to various features
in your Simulink model.

Launch report automatically
This option directs Real-Time Workshop to open a MATLAB Web browser
window and display the code generation report. If you clear this option,
you can open the code generation report (modelname_codegen_rpt.html or
subsystemname_codegen_rpt.html) manually in a MATLAB Web browser
window or in another Web browser.

Debug Pane Options
Real-Time Workshop uses the Target Language Compiler (TLC) to generate
C code from the model.rtw file. The TLC debugger helps you identify
programming errors in your TLC code. Using the debugger, you can perform
the following actions:

• View the TLC call stack.

3-25

3 Project Generator

• Execute TLC code line-by-line.

• Analyze or change variables in a specified block scope.

When you select Debug from the Select tree, you see the Debug options as
shown in the next figure. In this dialog box, you set options that are specific to
Real-Time Workshop process and TLC debugging.

For details about using the options in Debug, refer to “About the TLC
Debugger” in your Real-Time Workshop Target Language Compiler
documentation.

Optimization Pane Options
On the Optimization pane in the Configuration Parameters dialog box, you
set options for the code that Real-Time Workshop generates during the build
process. Use these options to tailor the generated code to your needs. Select
Optimization from the Select tree on the Configuration Parameters dialog
box. The figure shows the Optimization pane when you select the system
target file multilink_grt.tlc under Real-Time Workshop system target
file.

3-26

Setting Real-Time Workshop® Category Options

These options are typically selected for Real-Time Workshop software to
provide optimized code generation for common code operations:

Parameter Description

Conditional input branch
execution

Improve model execution when the
model contains Switch and Multiport
Switch blocks.

Signal storage reuse Reuse signal memory.
Enable local block outputs Specify whether block signals are

declared locally
Reuse block outputs Specify whether Real-Time

Workshop reuses signal memory.
Eliminate superfluous local
variables (Expression folding)

Collapse block computations into
single expressions.

3-27

3 Project Generator

Parameter Description

Loop unrolling threshold Specify the minimum signal or
parameter width that generates a
for loop.

Optimize initialization code for
model reference

Specify whether to generate
initialization code for blocks that
have states.

For more information about using these and the other Optimization options,
refer to the Real-Time Workshop documentation.

Embedded IDE Link MU Pane Options
On the select tree, the Embedded IDE Link MU pane provides options in
these areas:

Parameter Description

Runtime Options Set options for run-time operations,
such as the build action and
whether to use processor-in-the-loop
functionality.

Project Options Set the build options for your project
code generation, including compiler
and linker settings.

Code Generation Configure your code generation
needs, such as enabling real-time
task execution profiling.

Link Automation Specify whether to export the
ghsmulti object to the MATLAB
workspace.

Runtime Options
Before you run your model as an executable on any Green Hills Software
processor, configure the run-time options for the model.

3-28

Setting Real-Time Workshop® Category Options

By selecting values for the options available, you configure the model build
process and task or process overrun handling.

Build action
To specify to Real-Time Workshop what to do when you click Build, select
one of the following options. The actions are cumulative—each listed action
adds features to the previous action on the list and includes all the previous
features:

Build Action Selection Description

Create_project Directs Real-Time Workshop software
to start Green Hills MULTI software
and populate a new project with the
files from the build process. This option
offers a convenient way to build projects
in Green Hills MULTI IDE.Real-Time
Workshop software generates C code
only from the model. It does not use
the Green Hills Software development
tools, such as the compiler and linker.
Also, MATLAB software does not create
the ghsmulti object for accessing the
Green Hills MULTI software that
results from the other options.

Archive_library Directs Real-Time Workshop software
to archive the project for this model.
Use this option when you plan to
use the model in a model reference
application. Model reference requires
that you archive your Green Hills
MULTI projects for models that you use
in model referencing.

Build Builds the processor-specific executable
file, but does not download the file to
your processor.

3-29

3 Project Generator

Build Action Selection Description

Create_processor_in_the_loop_project Directs the Real-Time Workshop
software code generation process to
create PIL algorithm object code as part
of the project build.

Build_and_execute Directs Real-Time Workshop software
to build, download, and run your
generated code as an executable on
your processor.

Your selection for Build action determines what happens when you click
Build or press Ctrl+B. Your selection tells Real-Time Workshop when to stop
the code generation and build process.

To run your model on the processor, select the default build action,
Build_and_execute. Real-Time Workshop then automatically downloads
and runs the model on your processor.

Note When you build and execute a model on your processor, the Real-Time
Workshop software build process resets the processor automatically.

Interrupt overrun notification method
To enable the overrun indicator, choose one of three ways for the processor
to respond to an overrun condition in your model:

None Ignore overruns encountered while
running the model.

Print_message When the processor encounters
an overrun condition, it prints a
message to the standard output
device, stdout.

Call_custom_function Respond to overrun conditions by
calling the custom function you

3-30

Setting Real-Time Workshop® Category Options

identify in Interrupt overrun
notification function.

Interrupt overrun notification function
When you select Call_custom_function from the Interrupt overrun
notification method list, you enable this option. Enter the name of the
function the processor uses to notify you that an overrun condition occurred.
The function must exist in your code on the processor.

PIL block action
Selecting Create_Processor_In_the_Loop_project for the Build action
enables PIL block action. Choose one of the following three actions for
creating a PIL block:

PIL Block Action Selection Description

None Do not create the PIL block or PIL
algorithm object code.

Create PIL block Create the algorithm object code
and PIL block. Use this selection to
create a PIL block.

Create PIL
block_build_and_download

Create the algorithm object code
and PIL block, and then build
and download the project to your
processor. Use this selection to
update an existing PIL block in a
model.

Maximum time allowed to build project (s)
Specifies how long, in seconds, the software waits for the project build process
to return a completion message. 1000 s is the default to allow extra time to
complete project builds and code generation.

Project Options
Before you run your model as an executable on any processor, configure the
Project options for the model. By default, the setting for the project options is

3-31

3 Project Generator

Custom, which applies MathWorks specified compiler and linker settings for
your generated code.

Compiler options string
To determine the degree of optimization provided by the Green Hills
optimizing compiler, enter the optimization level to apply to files in your
project. For details about the compiler options, refer to your Green Hills
MULTI documentation. When you create new projects, Embedded IDE Link
MU software sets the optimization to -g.

System stack size (MAUs)
Enter the amount of memory to use for the stack. For more information on
memory needs, refer to Enable local block outputs on the Optimization
pane of the dialog box. The block output buffers are placed on the stack until
the stack memory is fully allocated. When the stack memory is full, the
output buffers go in global memory. Refer to the online Help system for more
information about Real-Time Workshop options for configuring and building
models and generating code.

Code Generation
From this category, you select options that define the way your code is
generated:

Parameter Description

Profile real-time task execution Enable real-time task execution
profiling in your project.

Inline run-time library functions Specify whether to inline each Signal
Processing Blockset™ and Video
and Image Processing Blockset™
function.

To enable the real-time execution profile capability, select Profile real-time
task execution. When you select this option, the build process instruments
your code to provide performance profiling at the task level. When you run
your code, the executed code reports the profiling information in graphical
presentation and an HTML report forms.

3-32

Setting Real-Time Workshop® Category Options

To specify whether the functions generated from blocks in your model are used
inline or by pointers, select Inline run-time library functions. Selecting
this option tells the compiler to inline each Signal Processing Blockset
and Video and Image Processing Blockset function. Using inline functions
optimizes your code to run more efficiently. However, such optimization
requires more memory.

As shown in the following figure, the default setting uses inlining to optimize
your generated code.

When you designate a block function as inline, the compiler replaces each call
to a block function with the equivalent function code from the static run-time

3-33

3 Project Generator

library. If your model uses the same block four times, your generated code
contains four copies of the function.

While this redundancy uses more memory, inline functions run more quickly
than calls to the functions outside the generated code.

Link Automation
When you use Real-Time Workshop software to build a model to a processor,
Embedded IDE Link MU software makes a connection between MATLAB and
Green Hills MULTI. MATLAB represents that connection as a ghsmulti
object. The properties of the ghsmulti object contain information about the
IDE instance it refers to, such as the session and processor it accesses. In this
pane, the Export MULTI link handle to base workspace option instructs
the software to export the ghsmulti object created during code generation to
your MATLAB workspace. MATLAB exports the object with the name you
specify in MULTI link handle name.

Maximum time to complete MULTI operations (s)
Specifies how long the software waits for IDE functions, such as read or
write, to return completion messages.

Overrun Indicator and Software-Based Timer
Embedded IDE Link MU software includes software that generates interrupts
in models that use multiple clock rates. In the following cases, the overrun
indicator does not work:

• In multirate systems where the rate in the model is not the same as the
base clock rate for your model. In such cases, the timer in Embedded IDE
Link MU provides the interrupts for setting the model rate.

• In models that do not include ADC or DAC blocks. In such cases, the timer
provides the software interrupts that drive model processing.

3-34

Schedulers and Timing

Schedulers and Timing

In this section...

“Configuring Models for Asynchronous Scheduling” on page 3-35
“Using Asynchronous Scheduling” on page 3-37
“Comparing Synchronous and Asynchronous Interrupt Processing” on page
3-39
“Using Synchronous Scheduling” on page 3-41
“Using Asynchronous Scheduling” on page 3-42
“Multitasking Scheduler Examples” on page 3-47

Configuring Models for Asynchronous Scheduling
Using the scheduling blocks, you can use an asynchronous (real-time)
scheduler for your processor application. The asynchronous scheduler enables
you to define interrupts and tasks to occur when you want by using blocks in
the following libraries:

• C281x DSP Chip Support

• C5000 DSP Chip Support

• C6000 DSP Chip Support

• Core Support

• Analog Devices Blackfin Support

• Freescale MPC5500 Support

• Freescale MPC7400

• SHARC DSP Support

• TigerSHARC DSP Support

3-35

3 Project Generator

Note Models in this section are for example purposes only. You cannot build
and run them without additional blocks.

Also, you can schedule multiple tasks for asynchronous execution using the
blocks.

The following figures show a model updated to use the asynchronous
scheduler by converting the model to a function subsystem and then adding
a scheduling block (Hardware Interrupt) to drive the function subsystem in
response to interrupts.

Before
The following model uses synchronous scheduling provided by the base rate
in the model.

Out 1

1

Soft Threshold

Dead Zone

Dyadic Synthesis
Filter Bank

2: Asym
Dyadic Analysis

Filter Bank

2: Asym

Delay Alignment

In1

In2

In3

In4

Out 1

Out 2

Out 3

Out 4In1

1
Output

After
To convert to asynchronous operation, wrap the model in the previous figure
in a function block and drive the input from a Hardware Interrupt block. The
hardware interrupts that trigger the Hardware Interrupt block to activate an
ISR now triggers the model inside the function block.

3-36

Schedulers and Timing

Algorithm Inside the Function Call Subsystem Block
Here’s the model inside the function call subsystem in the previous figure. It
is the same as the original model that used synchronous scheduling.

Out 1

1

Soft Threshold

Dead Zone

Dyadic Synthesis
Filter Bank

2: Asym
Dyadic Analysis

Filter Bank

2: Asym

Delay Alignment

In1

In2

In3

In4

Out 1

Out 2

Out 3

Out 4In1

1
Output

Using Asynchronous Scheduling
The following sections present common cases for using the scheduling blocks
described in the previous sections.

Idle Task
The following model illustrates a case where the reverberation algorithm runs
in the context of a background task in bare-board code generation mode.

3-37

3 Project Generator

The function generated for this task normally runs in free-running
mode—repetitively and indefinitely. Subsystem execution of the reverberation
function is the same as the subsystem described for the Free-Running
DSP/BIOS Task. It is data driven via a background DMA interrupt-controlled
ISR, shown in the following figure.

Out1
1

Integer Delay

z
−2400

Feedback Gain

0.8

Delay Mix

.9

function

f()

In1
1

Hardware Interrupt Triggered Task
In the next figure, you see a case where a function (LED Control) runs in the
context of a hardware interrupt triggered task.

3-38

Schedulers and Timing

In this model, the Hardware Interrupt block installs a task that runs when
it detects an external interrupt. This task performs the specified function
with an LED.

Comparing Synchronous and Asynchronous Interrupt
Processing
Code generated for periodic tasks, both single- and multitasking, runs
via a timer interrupt. A timer interrupt ensures that the generated code
representing periodic-task model blocks runs at the specified period. The
periodic interrupt clocks code execution at runtime. This periodic interrupt
clock operates on a period equal to the base sample time of your model. You
can use timer interrupts with:

3-39

3 Project Generator

• Generated code that incorporates DSP/BIOS real-time operating system
(RTOS)

• Generated code that does not include DSP/BIOS RTOS

Note In timer-based models, the timer counts through one full
base-sample-time before it creates an interrupt. When Simulink software
finally execute the model, it is for time 0.

The following figure shows the relationship between model startup and
execution. Execution starts where your model executes the first interrupt,
offset to the right of t=0 from the beginning of the time line. Before the first
interrupt, the simulation goes through the timer set up period and one base
rate period.

����� 	
���

����
��
��������������

����
������
��
���

	
���

��
��
���

	
���

��
��
���

	
���

��
��
���

Timer-based scheduling does not provide enough flexibility for some systems.
Systems for control and communications must respond to asynchronous
events in real time. Such systems may need to handle a variety of hardware
interrupts in an asynchronous, or aperiodic , fashion.

3-40

Schedulers and Timing

When you plan your project or algorithm, select your scheduling technique
based on your application needs.

• If your application processes hardware interrupts asynchronously, add the
appropriate asynchronous scheduling blocks from the library to your model:

- A Hardware Interrupt block, to create an interrupt service routine to
handle hardware interrupts on the selected processor

- An Idle Task block, to create a task that runs as a separate thread
The following table lists specific scheduling blocks for each supported
processor or family.

DSP Chip Library Support Scheduling Blocks

Blackfin Support Hardware Interrupt
MPC5500 Support Hardware Interrupt
MPC7400 Support Hardware Interrupt
Core Support Idle Task

• Simulink sets the base rate priority to 40, the lowest priority.

• If your application does not service asynchronous interrupts, include only
the algorithm and device driver blocks that specify the periodic sample
times in the model.

Note Generating code from a model that does not service asynchronous
interrupts automatically enables and manages a timer interrupt. The
periodic timer interrupt clocks the entire model.

Using Synchronous Scheduling
Code that runs synchronously via a timer interrupt requires an interrupt
service routine (ISR). Each model iteration runs after an ISR services a posted
interrupt. The code generated for Embedded IDE Link CC uses a timer. To
calculate the timer period, the software uses the following equation:

Timer Period
CPU Clock Rate Base Sample Time

Low Resolu
_

(_ _) * (_ _)
_

=
ttion Clock Divider

Prescaler
_ _

*

3-41

3 Project Generator

The software configures the timer so that the base rate sample time for the
coded process corresponds to the interrupt rate. Embedded IDE Link CC
calculates and configures the timer period to ensure the desired sample rate.

Different processor families use the timer resource and interrupt number
differently. Entries in the following table show the resources each family uses.

Processor
Family

Timer Resource Interrupt
Number

Simulink
Priority

MPC5500 Decrementer 10

MPC7400 Decrementer Dedicated
decrementer
interrupt

The minimum base rate sample time you can achieve depends on two
factors—the algorithm complexity and the CPU clock speed. The maximum
value depends on the maximum timer period value and the CPU clock speed.

If all the blocks in the model inherit their sample time value, and you do not
define the sample time, Simulink assigns a default sample time of 0.2 second.

Using Asynchronous Scheduling
Embedded IDE Link MU enables you to model and automatically generate
code for asynchronous systems. To do so, use the following scheduling blocks:

• Hardware Interrupt blocks for bare-board code generation mode

• Idle Task

The Hardware Interrupt block operates by

• Generating selected hardware interrupts for the processor

• Generating corresponding ISRs for the interrupts

• Connecting the ISRs to the corresponding interrupt service vector table
entries

3-42

Schedulers and Timing

Note You are responsible for mapping and enabling the interrupts you
specify in the block dialog box.

Connect the output of the Hardware Interrupt block to the control input
of a function-call subsystem. By doing so, you enable the ISRs to call the
generated subsystem code each time the hardware raises the interrupt.

The Idle Task block specifies one or more functions to execute as background
tasks in the code generated for the model. The functions are created from the
function-call subsystems to which the Idle Task block is connected.

Mapping and Enabling Interrupts in Generated Code
Although the scheduling blocks generate ISRs to respond to interrupts, they
do not enable the interrupts in your code. The blocks also do not map the
interrupts to the specific ISRs you specify in the block dialog boxes.

To enable and map the interrupt routines, you provide code that performs the
mapping and enabling functions. ISR mapping and enabling code might look
like following samples which enable and map interrupts 5 and 7:

IRQ_map(IRQ_EVT_EXTINT5,5); % Map interrupt 5 in the block to ext. int.5.

IRQ_set(IRQ_EVT_EXTINT5); % Enable interrupt 5.

IRQ_map(IRQ_EVT_EXTINT7,7); % Map interrupt 7 in the block to ext. int.7.

IRQ_set(IRQ_EVT_EXTINT7); % Enable interrupt 7.

The following figure shows the block dialog box that specifies the interrupts

3-43

3 Project Generator

One way to add the custom code to your generated code is to add a System
Outputs block to your model. In the System Outputs block, you add the code
to enable and map the interrupts.

Real-Time Workshop includes the System Outputs block in the Custom Code
library.

When you add the System Outputs block to your model and open the block
dialog box, you see the following dialog box.

3-44

Schedulers and Timing

To enable and map the interrupts, add the code to the dialog box as shown in
the following figure.

3-45

3 Project Generator

Generating code from your model that includes the System Outputs block
adds the enabling and mapping code to your project so the interrupts work.

3-46

Schedulers and Timing

The following figure shows a top-level model c6000_hwi_interrupts that
includes the System Outputs block in the Function-Call Subsystem2
submodel.

Multitasking Scheduler Examples
provides a scheduler that supports multiple tasks running concurrently and
preemption between tasks running at the same time. The ability to preempt
running tasks enables a wide range of scheduling configurations.

Multitasking scheduling also means that overruns, where a task runs beyond
its intended time, can occur during execution.

To understand these example, you must be familiar with the following
scheduling concepts:

• Preemption is the ability of one task to pause the processing of a running
task to run instead. With the multitasking scheduler, you can define a
task as preemptible—thus, another task can pause (preempt) the task
that allows preemption. The scheduler examples in this section that
demonstrate preemption, illustrate one or more tasks allowing preemption.

• Overrunning occurs when a task does not reach completion before it is
scheduled to run again. For example, overrunning can occur when a
Base-Rate task does not finish in 1 ms. Overrunning delays the next
execution of the overrunning task and may delay execution of other tasks.

Examples in this section demonstrate a variety of multitasking configurations:

• “Three Odd-Rate Tasks Without Preemption and Overruns” on page 3-49

• “Two Tasks with the Base-Rate Task Overrunning, No Preemption” on
page 3-50

• “Two Tasks with Sub-Rate 1 Overrunning Without Preemption” on page
3-52

• “Three Even-Rate Tasks with Preemption and No Overruns” on page 3-53

3-47

3 Project Generator

• “Three Odd-Rate Tasks Without Preemption and the Base and Sub-Rate1
Tasks Overrun” on page 3-55

• “Three Odd-Rate Tasks with Preemption and Sub-Rate 1 Task Overruns”
on page 3-57

• “Three Even-Rate Tasks with Preemption and the Base-Rate and Sub-Rate
1 Tasks Overrun” on page 3-59

Each example presents either two or three tasks:

• Base Rate task. Base rate is the highest rate in the model or application.
The examples use a base rate of 1ms so that the task should execute every
one millisecond.

• Sub-Rate 1. The first subrate task. Sub-Rate 1 task runs more slowly than
the Base-Rate task. Sub-Rate 1 task rate is 2ms in the examples so that
the task should execute every 2ms.

• Sub-Rate 2. In examples with three tasks, the second subrate task is
called Sub-Rate 2. Sub-Rate 2 tasks run more slowly than Sub-Rate 1. In
the examples, Sub-Rate 2 runs at either 4ms or 3ms.

- When Sub-Rate 2 is 4ms, the example is called even.

- When Sub-Rate 2 is 3ms, the example is called odd.

Note The odd or even naming only identifies Sub-Rate 2 as being 3 or 4ms.
It does not affect or predict the performance of the tasks.

The following legend applies to the plots in the next sections:

• Blue triangles () indicate when the task started.

• Dark red areas () indicate the period during which a task is running

• Pink areas () within dark red areas indicate a period during which a
running task is suspended—preempted by a task with higher priority

3-48

Schedulers and Timing

Three Odd-Rate Tasks Without Preemption and Overruns
In this three task scenario, all of the tasks run as scheduled. No overruns
or preemptions occur.

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 1ms
Sub-Rate 1 2ms 2ms

Sub-Rate 2 4ms 4ms

3-49

3 Project Generator

Two Tasks with the Base-Rate Task Overrunning, No
Preemption
In this two rate scenario, the Base-Rate overruns the 1ms time intended and
prevents the subrate task from completing successfully or running every 2ms.

• Sub-Rate 1 does not allow preemption and fails to run when scheduled, but
is never interrupted.

• The Base-Rate runs every 2ms and Sub-Rate 1 runs every 4ms instead
of 2ms.

3-50

Schedulers and Timing

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)
Sub-Rate 1 2ms 4ms (overrunning)

3-51

3 Project Generator

Two Tasks with Sub-Rate 1 Overrunning Without Preemption
In this example, two rates running simultaneously—the Base-Rate task and
one subrate task. Both the Base-Rate task and the Sub-Rate 1 task overrun.

• Base-Rate runs every 2ms instead of 1ms.

- The Sub-Rate 1 task both overruns and is affected by the Base-Rate
task overrunning.

- The Base-Rate task overrun delays Sub-Rate 1 task execution by a
factor of 4.

• Sub-Rate 1 runs every 8ms rather than every 2ms.

• The Base-Rate runs at 1ms.

• The Base-Rate task preempts Sub-Rate 1 when it tries to execute.

• The Sub-Rate 1 tasks overrun, taking up to 5ms to complete rather than
2ms.

3-52

Schedulers and Timing

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)
Sub-Rate 1 2ms 8ms (overrunning)

Three Even-Rate Tasks with Preemption and No Overruns
In the following three task scenario, the Base-Rate runs as scheduled and
preempts Sub-Rate 1.

3-53

3 Project Generator

• Both the Base-Rate and Sub-Rate 1 tasks preempt Sub-Rate 2 task
execution.

• Preempting the subrate tasks does not prevent the subrate tasks from
running on schedule.

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 1ms

Sub-Rate 1 2ms 2ms

Sub-Rate 2 3ms 6ms

3-54

Schedulers and Timing

Three Odd-Rate Tasks Without Preemption and the Base and
Sub-Rate1 Tasks Overrun
Three tasks running simultaneously—the Base-Rate task and two subrate
tasks.

• Both the Base-Rate task and the Sub-Rate 1 task overrun.

• The Base-Rate task runs every 2ms instead of 1ms.

• Sub-Rate 1 and Sub-Rate 2 task execution is delayed by a factor of
2—Sub-Rate 1 runs every 4ms rather than every 2ms and Sub-Rate 2 runs
every 6ms instead of 3ms.

3-55

3 Project Generator

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)
Sub-Rate 1 2ms 4ms (overrunning)
Sub-Rate 2 3ms 6ms (overrunning)

3-56

Schedulers and Timing

Three Odd-Rate Tasks with Preemption and Sub-Rate 1 Task
Overruns
In this three task scenario, the Base-Rate preempts Sub-Rate 1 which is
overrunning.

• The overrunning subrate causes Sub-Rate 1 to execute every 4ms instead
of 2ms.

• Every other fourth execution of Sub-Rate 2 does not occur.

• Instead of executing at t=0, 3, 6, 9, 12, 15, 18,…, Sub-Rate 2 executes at
t=0, 3, 9, 12, 15, 21, and so on.

• The t=6 and t=18 instances do not occur.

3-57

3 Project Generator

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)
Sub-Rate 1 2ms 4ms (overrunning)
Sub-Rate 2 3ms 6ms (overrunning and

skipping every other
fourth execution)

3-58

Schedulers and Timing

Three Even-Rate Tasks with Preemption and the Base-Rate
and Sub-Rate 1 Tasks Overrun
In this three-task scenario, two of the tasks overrun—the Base-Rate and
Sub-Rate 1.

• The overrunning Base-Rate executes every 2ms.

• Sub-Rate 1 overruns due to the Base-Rate overrun, doubling the execution
rate.

• Also, Sub-Rate 1 is overrunning as well, doubling the execution rate again,
from the intended 2ms to 8ms.

• Sub-Rate 2 responds to the overrunning Base-Rate and Sub-Rate 1 tasks
by running every 16ms instead of every 4ms.

3-59

3 Project Generator

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)
Sub-Rate 1 2ms 8ms (overrunning)
Sub-Rate 2 3ms 16ms (overrunning)

3-60

Optimizing Embedded Code with Target Function Libraries

Optimizing Embedded Code with Target Function Libraries

In this section...

“About Target Function Libraries and Optimization” on page 3-61
“Using a Processor-Specific Target Function Library to Optimize Code”
on page 3-63
“Process of Determining Optimization Effects Using Real-Time Profiling
Capability” on page 3-64
“Reviewing Processor-Specific Target Function Library Changes in
Generated Code” on page 3-64
“Reviewing Target Function Library Operators and Functions” on page 3-67
“Creating Your Own Target Function Library” on page 3-67

About Target Function Libraries and Optimization
A target function library is a set of one or more function tables that define
processor- and compiler-specific implementations of functions and arithmetic
operators. The code generation process uses these tables when it generates
code from your Simulink model.

The Embedded IDE Link MUsoftware registers processor-specific target
function libraries during installation. To use one of the libraries, select the set
of tables that correspond to functions implemented by intrinsics or assembly
code for your processor from the Target function library list in the model
configuration parameters.

After you select the processor-specific library, the model build process uses the
library contents to optimize generated code for that processor. The generated
code includes processor-specific implementations for sum, sub, mult, and div,
and various functions, such as tan or abs, instead of the default ANSI®
C instructions and functions. The optimized code enables your embedded
application to run more efficiently and quickly, and in many cases, reduces the
size of the code. For more information about target function libraries, refer
to “Introduction to Target Function Libraries” in the Real-Time Workshop
Embedded Coderdocumentation.

3-61

3 Project Generator

Code Generation Using the Target Function Library
The build process begins by converting your model and its configuration set to
an intermediate form that reflects the blocks and configurations in the model.
Then the code generation phase starts.

Note Real-Time Workshop refers to the following conversion process as
replacement and it occurs before the build process generates a project.

During code generation for your model, the following process occurs:

1 Code generation encounters a call site for a function or arithmetic operator
and creates and partially populates a target function library entry object.

2 The entry object queries the target function library database for an
equivalent math function or operator. The information provided by the code
generation process for the entry object includes the function or operator
key, and the conceptual argument list.

3 The code generation process passes the target function library entry object
to the target function library.

4 If there is a matching table entry in the target function library, the query
returns a fully-populated target function library entry to the call site,
including the implementation function name, argument list, and build
information

5 The code generation process uses the returned information to generate code.

Within the target function library that you select for your model, the software
searches the tables that comprise the library. The search occurs in the order
in which the tables appear in either the Target Function Library Viewer or
the Target function library tool tip. For each table searched, if the search
finds multiple matches for a target function library entry object, priority level
determines the match to return. The search returns the higher-priority
(lower-numbered) entry.

3-62

Optimizing Embedded Code with Target Function Libraries

For more information about target function libraries in the build process, refer
to “Introduction to Target Function Libraries” in the Real-Time Workshop
Embedded Coderdocumentation.

Using a Processor-Specific Target Function Library to
Optimize Code
As a best practice, you should select the appropriate target function library
for your processor after you verify the ANSI C implementation of your project.

Note Do not select the processor-specific target function library if you use
your executable application on more than one specific processor. The operator
and function entries in a library may work on more than one processor within
a processor family. The entries in a library usually do not work with different
processor families.

To use target function library for processor-specific optimization when you
generate code, you must install Real-Time Workshop Embedded Coder
software. Your model must include a Target Preferences block configured
for you intended processor.

Perform the following steps to select the target function library for your
processor:

1 Select Simulation > Configuration Parameters from the model menu
bar. The Configuration Parameters dialog box for your model opens.

2 On the Select tree in the Configuration Parameters dialog box, choose
Real-Time Workshop.

3 Use Browse to select multilink_ert.tlc as the System target file.

4 On the Select tree, choose Interface.

5 On the Target function library list, select the processor family that
matches your processor. Then, click OK to save your changes and close
the dialog box.

3-63

3 Project Generator

With the target function library selected, your generated code uses the specific
functions in the library for your processor.

To stop using a processor-specific target function library, open the Interface
pane in the model configuration parameters. Then, select the C89/C90
(ANSI) library from the Target function library list.

Process of Determining Optimization Effects Using
Real-Time Profiling Capability
You can use the real-time profiling capability to examine the results of
applying the processor-specific library functions and operators to your
generated code. After you select a processor-specific target function library,
use the real-time execution profiling capability to examine the change in
program execution time.

Use the following process to evaluate the effects of applying a processor-specific
target function library when you generate code:

1 Enable real-time profiling in your model. Refer to “Real-Time Execution
Profiling” on page 4-12 in the online Help system.

2 Generate code for your project using the default target function library
C89/C90 ANSI.

3 Profile the code, and save the report.

4 Rebuild your project using a processor-specific target function library
instead of the C89/C90 ANSI library.

5 Profile the code, and save the second report.

6 Compare the profile report from running your application with the
processor-specific library selected to the profile results with the ANSI
library selected in the first report.

Reviewing Processor-Specific Target Function Library
Changes in Generated Code
Use one of the following techniques or tools to see the target function library
elements where they appear in the generated code:

3-64

Optimizing Embedded Code with Target Function Libraries

• Review the Code Manually.

• Use Model-to-Code Tracing to navigate from blocks in your model to the
code generated from the block.

• Use a File Differencing Scheme to compare projects that you generate
before and after you select a processor-specific target function library.

Reviewing Code Manually
To see where the generated code uses target function library replacements,
review the file modelname.c . Look for code similar to the following statement

j = mul_s32_s32_s32_sr6_sat(codeopt_tfl_P.Gain1_Gain, rtb_SineWave[i]);

tmp_0 = mul_s32_s32_s32_sr6_sat(codeopt_tfl_P.Gain2_Gain, rtb_UnitDelay[i]);

tmp_1 = j + tmp_0;

The function mul_s32_s32_s32_sr6_sat is the multiply implementation
function registered in the TI C62x target function library. In this example, the
function performs an optimized multiplication operation. Similar functions
appear for add, and sub. For more information about the arguments in the
function, refer to “Introduction to Target Function Libraries” in the online
Help system.

Using Model-to-Code Tracing
You can use the model-to-code report options in the configuration parameters
to trace the code generated from any block with target function library. After
you create your model and select a target function library, follow these steps
to use the report options to trace the generated code:

1 Open the model configuration parameters.

2 Select Report from the Select tree.

3 In the Report pane, select Create code generation report and
Model-to-code, and then save your changes.

4 Press Ctrl+B to generate code from your model.

The Real-Time Workshop Report window opens on your desktop. For
more information about the report, refer to “Creating and Using a

3-65

3 Project Generator

Code Generation Report” in the Real-Time Workshop Embedded Coder
documentation.

5 Use model-to-code highlighting to trace the code generated for each block
with target function library applied:

• Right-click on a block in your model and select Real-Time
Workshop > Navigate to code from the context menu.

• Select Navigate-to-code to highlight the code generated from the block
in the report window.

Inspect the code to see the target function operator in the generated code.
For more information, refer to “Tracing Code Generated Using Your
Target Function Library” in the Real-Time Workshop Embedded Coder
documentation in the online Help system.

If a target function library replacement did not occur as you expected, use the
techniques described in “Examining and Validating Function Replacement
Tables” in the Real-Time Workshop Embedded Coder documentation to help
you determine why the build process did not use the function or operator.

Using a File Differencing Scheme
You can also review the target function library induced changes in your
project by comparing projects that you generate both with and without the
processor-specific target function library.

1 Generate your project with the default C89/C90 ANSI target function
library. Use Create Project, Archive Library, or Build for the Build
action in the Embedded IDE Link MU options.

2 Save the project to a new name—newproject1.

3 Go back to the configuration parameters for your model, and select a target
function library appropriate for your processor.

4 Regenerate your project.

5 Save the project with a new name—newproject2

3-66

Optimizing Embedded Code with Target Function Libraries

6 Compare the contents of the modelname.c files from newproject1 and
newproject2. The differences between the files show the target function
library induced code changes.

Reviewing Target Function Library Operators and
Functions
Real-Time Workshop Embedded Coder software provides the Target Function
Library viewer to enable you to review the arithmetic operators and functions
registered in target function library tables.

To open the viewer, enter the following command at the MATLAB prompt.

RTW.viewTfl

For details about using the target function library viewer, refer to “Selecting
and Viewing Target Function Libraries” in the online Help system.

Creating Your Own Target Function Library
For details about creating your own library, refer to the following sections in
your Real-Time Workshop Embedded Coder documentation:

• “Introduction to Target Function Libraries”

• “Creating Function Replacement Tables”

• “Examining and Validating Function Replacement Tables”

3-67

3 Project Generator

Model Reference and Embedded IDE Link MU Software

In this section...

“About Model Reference” on page 3-68
“How Model Reference Works” on page 3-68
“Using Model Reference with Embedded IDE Link MU Software” on page
3-70
“Configuring Targets to Use Model Reference” on page 3-71

About Model Reference
Model reference lets your model include other models as modular components.
This technique is useful because it provides the following capabilities:

• Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code once for all the modules in the entire model and
then only regenerate code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your Real-Time Workshop documentation provides much more information
about model reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation.
This discussion uses the following terms:

• The Top model is the root model block or model. It refers to other blocks or
models. In the model hierarchy, this model is the topmost model.

3-68

Model Reference and Embedded IDE Link™ MU Software

• Referenced models are blocks or models that other models reference, such
as models the top model refers to. All models or blocks below the top model
in the hierarchy are reference models.

The following sections describe briefly how model reference works. More
details are available in your Real-Time Workshop documentation in the
online Help system.

Model Reference in Simulation
When you simulate the top model, Real-Time Workshop detects that your
model contains referenced models. Simulink generates code for the referenced
models and uses the generated code to build shared library files for updating
the model diagram and simulation. It also creates an executable (.mex file) for
each reference model that is used to simulate the top model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink rebuilds the model reference files. Whether reference
files or models are rebuilt depends on whether and how you change the models
and on the Rebuild options settings. You can access these settings through
theModel Reference pane of the Configuration Parameters dialog box.

Model Reference in Code Generation
Real-Time Workshop requires executables to generate code from models. If
you have not simulated your model at least once, Real-Time Workshop creates
a .mex file for simulation.

Next, for each referenced model, the code generation process calls make_rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building all the referenced models, Real-Time Workshop calls make_rtw
on the top model. The call to make_rtw links to the library files Real-Time
Workshop created for the associated referenced models.

3-69

3 Project Generator

Using Model Reference with Embedded IDE Link MU
Software
With few limitations or restrictions, Embedded IDE Link MU software
provides full support for generating code from models that use model
reference.

Build Action Setting
The most important requirement for using model reference with the Green
Hills MULTI software supported processors is you must set the Build action
(select Configuration Parameters > Embedded IDE Link MU) for all
models referred to in the simulation to Archive_library.

To set the build action, perform the following steps:

1 Open your model.

2 Select Simulation > Configuration Parameters from the model menus.

The Configuration Parameters dialog box opens.

3 From the Select tree, choose Embedded Embedded IDE Link MU.

4 In the right pane, under Runtime, select set Archive_library from the
Build action list.

If your top model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive_library and issues a warning about the change.

Selecting Archive_library disables the Interrupt overrun notification
method, Export MULTI link handle to the base workspace, and
System stack size options for the referenced models.

Target Preferences Blocks in Reference Models
Each referenced model and the top model must include a Target Preferences
block for the correct processor. Configure all the Target Preferences blocks
for the same processor.

3-70

Model Reference and Embedded IDE Link™ MU Software

The referenced models need target preferences blocks to provide information
about which compiler and which archiver to use. Without these blocks, the
compile and archive processes do not work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the
necessary information, which the Target Preferences block in the model
provides.

Other Block Limitations
Model reference with Embedded IDE Link MU software code generation
options does not allow you to use noninlined S-functions in reference models.
Verify that the blocks in your model do not use noninlined S-functions.

Configuring Targets to Use Model Reference
When you create models to use in Model Referencing, keep in mind the
following considerations:

• Your model must use a system target file derived from the ERT or GRT
target files.

• When you generate code from a model that references other models,
configure the top-level model and the referenced models for the same
system target file.

• Real-Time Workshop builds and Embedded IDE Link MU software projects
do not support external mode in model reference. If you select the external
mode option, it is ignored during code generation.

• Your TMF must support use of the shared utilities directory, as described
in Supporting Shared Utility Directories in the Build Process in the
Real-Time Workshop documentation.

To use an existing processor, or a new processor, with Model Reference, set
the ModelReferenceCompliant flag for the processor. For information about
setting this option, refer to ModelReferenceCompliant in the online Help
system.

3-71

3 Project Generator

If you start with a model that was created before MATLAB release R14SP3,
use the following command to make your model compatible with model
reference :

% Set the Model Reference Compliant flag to on.
set_param(bdroot,'ModelReferenceCompliant','on')

Code that you generate from Simulink models by using Embedded IDE Link
MU software includes the model reference capability. You do not need to
set the flag.

3-72

4

Verification

• “What Is Verification?” on page 4-2

• “Using Processor-in-the-Loop” on page 4-3

• “Real-Time Execution Profiling” on page 4-12

4 Verification

What Is Verification?
Verification consists broadly of running generated code on a processor and
verifying that the code does what you intend. The components of Embedded
IDE Link MU software combine to provide tools that help you verify your
code during development by letting you run portions of simulations on your
hardware and profiling the executing code.

Using the Automation Interface and Project Generator components,
Embedded IDE Link MU software offers the following verification functions:

• Processor-in-the-Loop — A technique to help you evaluate how your process
runs on your processor

• Real-Time Task Execution Profiling — A tool that lets you see how the
tasks in your process run in real-time on your hardware

4-2

Using Processor-in-the-Loop

Using Processor-in-the-Loop

In this section...

“Processor-in-the-Loop Overview” on page 4-3
“PIL Block” on page 4-6
“PIL Issues” on page 4-6
“Creating and Using PIL Blocks” on page 4-8

Processor-in-the-Loop Overview
Processor-in-the-loop (PIL) operation provides a powerful verification
capability in your development process. Processor-in-the-loop (PIL)
cosimulation is a technique designed to help you evaluate how well a
candidate algorithm, such as a control system, operates on the actual
processor selected for the application.

Cosimulation reflects a division of labor in which Simulink models the plant,
while code generated from the controller subsystem runs on the processor
hardware.

During the Real-Time Workshop Embedded Coder code generation process,
you can create a PIL block from one of several Simulink components including
a model, a subsystem in a model, or subsystem in a library. You then place the
generated PIL block inside a Simulink model that serves as the test harness
and run tests to evaluate the processor-specific code execution behavior.

Why Use Cosimulation?
PIL cosimulation is particularly useful for simulating, testing, and validating
a controller algorithm in a system comprising a plant and a controller. In a
classic closed-loop simulation, Simulink and Stateflow® model such a system
as two subsystems with the signals transmitted between them, as shown in
the following block diagram:

4-3

4 Verification

Your starting point in developing a combined plant and controller system
model is to model the combined system as two subsystems in closed-loop
simulation. As your design progresses, you can use Simulink external mode
with standard Real-Time Workshop targets (such as GRT or ERT) to help you
model the controller system separately from the plant.

However, these simulation techniques do not help you account for restrictions
and requirements imposed by the hardware, such as limited memory
resources, or behavior of processor-specific optimized code. When you reach
the stage of deploying controller code on the processor hardware, you may
need to make extensive adjustments to the controller system to account for the
hardware specifics. After you make these adjustments, your deployed system
may have diverged significantly from your original model. Such discrepancies
can create difficulties if you need to change the original model.

PIL cosimulation addresses these issues by providing an intermediate stage
between simulation and deployment. In a PIL cosimulation, the processor
participates fully in the simulation loop—hence the term processor-in-the-loop.

Two new terms appear in the following sections

4-4

Using Processor-in-the-Loop

• PIL Algorithm— The algorithmic code, such as the control algorithm, to
test during the PIL cosimulation. The PIL algorithm resides in compiled
object form to allow verification at the object level.

• PIL Application — The executable application to run on the processor.
The PIL application is created by linking the PIL algorithm object code
with wrapper code or a test harness that provides an execution framework
that interfaces to the PIL algorithm.

The wrapper code includes the string.h header file so that the memcpy
function is available to the PIL application. The PIL application uses
memcpy to facilitate data exchange between Simulink and the cosimulation
processor.

Note Whether the PIL algorithm code under test uses string.h is
independent of the use of string.h by the wrapper code, and is entirely
dependent on the implementation of the algorithm in the generated code.

How Cosimulation Works
In a PIL cosimulation, Real-Time Workshop software generates an executable
application for the PIL algorithm. This code runs (in simulated time) on a
processor platform. The plant model remains in Simulink without the use of
code generation.

During PIL cosimulation, Simulink simulates the plant model for one sample
interval and exports the output signals (outn of the plant) to the processor
platform via Green Hills MULTI. When the processor platform receives
signals from the plant model, it executes the PIL algorithm for one sample
step. The PIL algorithm returns its output signals (ontn of the algorithm)
computed during this step to Simulink in inn, via the Green Hills MULTI
interface. At this point, one sample cycle of the simulation is complete and
the plant model proceeds to the next sample interval. The process repeats
and the simulation progresses.

PIL tests do not run in real time. After each sample period, the simulation
halts to ensure that all data has been exchanged between the Simulink test
harness and object code. You can then check functional differences between
the model and generated code.

4-5

4 Verification

PIL Block
The PIL cosimulation block is the Simulink block interface to PIL and the
interface between the Simulink plant model and the executable application
running on the processor. The Simulink inputs and outputs of the PIL
cosimulation block are configured to match the input and output specification
of the PIL algorithm.

The block is a basic building block that enables you to perform these
operations:

• Select a PIL algorithm

• Build and download a PIL application

• Run a PIL simulation

The PIL block inherits the shape and signal names from the parent
subsystem, like those in the following example. This inheritance feature is
convenient for copying the PIL block into the model to replace the original
subsystem for cosimulation.

PIL Issues

• “Generic PIL Issues” on page 4-7

• “Using Breakpoints and PIL” on page 4-7

• “Using TimeMachine and PIL” on page 4-7

Consider the following issues when you work with PIL blocks.

4-6

Using Processor-in-the-Loop

Generic PIL Issues
Refer to the Support Table section in the Real-Time Workshop Embedded
Coder documentation for general PIL feature support information affecting
the PIL block with Link products. See PIL Feature Support and Limitations.

Using Breakpoints and PIL
Green Hills MULTI debugger allows you to add breakpoints to your projects.
When you run a PIL simulation that includes added breakpoints, the
following dialog box appears:

The dialog box gives you two options:

• Stop the running simulation by closing the dialog box.

• Go to MULTI, remove the breakpoint you added, and press F5 to continue
running your simulation.

When you use MULTI to add breakpoints to the generated PIL code, the PIL
simulation doesn’t know how to use the debug points. If you use the add
function to add a breakpoint, you do not encounter the dialog box shown.

Using TimeMachine and PIL
MULTI IDE provides a debugging suite called TimeMachine™. The software
provides controls that allow you to step forward and backward through
paused code.

If you stop a running PIL program at a breakpoint, and then use the
TimeMachine debugging features, you must restore the program pointer to

4-7

4 Verification

the breakpoint before you restart the program. If you do not restore the
pointer location, MATLAB returns an error message and PIL stops working.

Note Do not remove the data breakpoint the PIL build process inserts. You
can remove any breakpoint that you insert in the code.

To use TimeMachine for debugging without problems, follow these steps:

1 Generate your PIL block.

2 Generate program code from the model that contains the PIL block.

3 Download the program to your processor.

4 From MATLAB or in the IDE, insert one or more breakpoints in the
program. For more information about adding breakpoints from MATLAB,
refer to add in the online Help system.

5 Run the program. The program stops at a breakpoint. Note the line
number or breakpoint where the program stopped. You will return the
program pointer to this location when you finish your debugging session.

6 Use TimeMachine controls to step the program pointer forward or
backward in your program to debug as needed.

7 When you finish debugging, use TimeMachine controls to return the
program pointer to the line or breakpoint where the program stopped in
step 5.

8 Restart your program.

Repeat steps 5 through 9 until you finish debugging your program.

Creating and Using PIL Blocks
Using PIL and PIL blocks to verify your processes begins with a Simulink
model of your process. To see an example of one such model used to implement
PIL, refer to the demo Comparing Simulation and Processor Implementation

4-8

Using Processor-in-the-Loop

with Processor-in-the Loop (PIL) (multilinkpilsumdiff.mdl) in the Getting
Started with Application Development demo for Embedded IDE Link MU.

Note Models can have multiple PIL blocks for different subsystems. You
cannot have more than one PIL block for the same subsystem. Including
multiple PIL blocks for the same subsystem causes errors and incorrect
results.

To create and use a PIL block
Perform the following tasks to create a new PIL block and use the block in
a model:

1 Develop the model of the process to simulate.

Use Simulink to build a model of the process to simulate. The blocks in
the library multilinklib can help you set up the timing and scheduling
for your model.

For information about building Simulink models, refer to Simulink Getting
Started Guide in the online Help system.

2 Convert your process to a masked subsystem in your model.

For information about how to convert your process to a subsystem, refer to
Creating Subsystems in Using Simulink or in the online Help system.

3 Open the new masked subsystem and add a Target Preferences block to
the subsystem.

The block library multilinklib contains the Target Preferences block
to add to your system. Configure the Target Preferences block for your
processor. For details about the options on the Target Preferences block,
refer to the Target Preferences block reference in the online Help system.

4 Configure your model to enable it to generate PIL algorithm code and a PIL
block from your subsystem.

4-9

4 Verification

a From the model menu bar, go to Simulation > Configuration
Parameters in your model to open the Configuration Parameters dialog
box.

b Choose Real-Time Workshop from the Select tree. Set the
configuration parameters for your model as required by the software.
Get more information about setting the Real-Time Workshop parameters
in Setting Real-Time Workshop Options for supported hardware in the
online Help system.

c Under Target selection, set the System target file to
multilink_ert.tlc (PIL requires Real-Time Workshop Embedded
Coder).

5 Configure the model to perform PIL building and PIL block creation.

a Select Embedded Embedded IDE Link MU on the Select tree.

b From the Build Action list, select
Create_processor_in_the_loop_project to enable PIL block creation
and cosimulation.

c From the PIL block action list, select Create PIL block.

d Click OK to close the Configuration Parameters dialog box.

6 To create the PIL block, right-click the masked subsystem in your model
and select Real-Time Workshop > Build Subsystem from the context
menu.

This step builds the PIL algorithm object code and a PIL block that
corresponds to the subsystem, with the same inputs and outputs. Follow
the progress of the build process in the MATLAB command window.

A new model window opens and the new PIL block appears in it.

7 Copy the new PIL block from the new model to your model, either in
parallel to your masked subsystem to cosimulate the processes, or replace
your subsystem with the PIL block.

To see the PIL block used in parallel to a masked subsystem, refer to the
demo Getting Started with Application Development in the demos for
Embedded Embedded IDE Link MU.

4-10

Using Processor-in-the-Loop

8 Click Simulation > Start to run the PIL simulation and view the results.

4-11

4 Verification

Real-Time Execution Profiling

In this section...

“Overview” on page 4-12
“Profiling Execution by Tasks” on page 4-13
“Profiling Execution By Subsystems” on page 4-15

Overview
Real-time execution profiling in Embedded IDE Link MU software uses a set
of utilities to support profiling for synchronous and asynchronous tasks, or
atomic subsystems, in your generated code. These utilities record, upload, and
analyze the execution profile data.

Note The software does not support profiling on NEC V850 and Freescale
MPC7400 processors.

Execution profiler supports profiling your code two ways:

• Tasks—Profile your project according to the tasks in the code.

• Atomic subsystems—Profile your project according to the atomic
subsystems in your model.

Note To perform execution profiling, you must generate your project from
a model in Simulink modeling environment and you must select the system
target file multilink_ert.tlc in the model configuration parameters.

When you enable profiling, you select whether to profile by task or subsystem.

To profile by subsystems, you must configure your model with at least one
atomic subsystem. To learn more about creating atomic subsystems, refer to
“Creating Subsystems” in the online help for Simulink software.

4-12

Real-Time Execution Profiling

The profiler generates output in the following formats:

• Graphical display that shows task or subsystem activation, preemption,
resumption, and completion. All data appears in a MATLAB graphic with
the data notated by model rates or subsystems and execution time.

• An HTML report that provides statistical data about the execution of each
task or atomic subsystem in the running process.

These reports are identical to the reports you see if you use
profile(ghsmulti_obj,'execution','report) to view the execution
results. For more information about report formats, refer to profile. In
combination, the reports provide a detailed analysis of how your code runs
on the processor.

Use this general process for profiling your project:

1 Create your model in Simulink modeling environment.

2 Enable execution profiling in the configuration parameters for your model.

3 Run your application.

4 Stop your application.

5 Get the profiling results with the profile function.

The following sections describe profiling your projects in more detail.

Profiling Execution by Tasks
To configure a model to use task execution profiling, perform the following
steps:

1 Open the Configuration Parameters dialog box for your model.

2 Select Embedded IDE Link MU from the Select tree. The pane appears as
shown in the following figure.

4-13

4 Verification

3 Select Profile real-time execution. The Profile by list appears.

4 On the Profile by list, select Task to enable real-time task profiling.

5 Select Export IDE link handle to base workspace, and assign a name
for the handle in MULTI link handle name.

6 Click OK to close the Configuration Parameters dialog box.

To view the execution profile for your model:

1 Click Incremental build () on the model toolbar to generate, build,
load, and run your code on the processor.

4-14

Real-Time Execution Profiling

2 To stop the running program, select Debug > Halt in MULTI IDE or
use halt(objectname) from the MATLAB command prompt. Gathering
profiling data from a running program may yield incorrect results.

3 At the MATLAB command prompt, enter

profile(handlename, execution , report)

to view the MATLAB software graphic of the execution report and the
HTML execution report.

Refer to profile for information about other reporting options.

The following figure shows the profiling plot from running an application
that has three rates—the base rate and two slower rates. The gaps in the
Sub-Rate2 task bars indicate preempted operations.

Refer to Task Profiling Report.

Profiling Execution By Subsystems
When your models use atomic subsystems, you have the option of profiling
your code based on the subsystems along with the tasks.

4-15

file://file://T:/Adoc/matlab/doc/src/toolbox/idelinkmu/ug/sample_task_profiling_report.html

4 Verification

To configure a model to use subsystem execution profiling, perform the
following steps:

1 Open the Configuration Parameters dialog box for your model.

2 Select Embedded IDE Link MU from the Select tree. The pane appears as
shown in the following figure.

3 Select Profile real-time execution.

4 On the Profile by list, select Atomic subsystem to enable real-time
subsystem execution profiling.

4-16

Real-Time Execution Profiling

5 Select Export IDE link handle to base workspace and assign a name
for the handle in IDE link handle name.

6 Click OK to close the Configuration Parameters dialog box.

To view the execution profile for your model:

1 Click Incremental build () on the model toolbar to generate, build,
load, and run your code on the processor.

2 To stop the running program, select Debug > Halt in MULTI IDE, or use
halt(objectname) from the MATLAB command prompt. Gathering profile
data from a running program may yield incorrect results.

3 At the MATLAB command prompt, enter:

profile(handlename, execution , report)

to view the MATLAB software graphic of the execution report and the
HTML execution report.

Refer to profile for more information.

The following figure shows the profiling plot from running an application that
has three subsystems—For Iterator Subsystem, For Iterator Subsystem1, and
Idle Task Subsystem.

4-17

4 Verification

The following figure presents the model that contains the subsystems reported
in the profiling plot.

4-18

Real-Time Execution Profiling

Atomic Subsystem Profiling

To Workspace

simout

Rate Transition 3

Rate Transition 2

Rate Transition 1

Rate Transition

IdleTask
Subsystem

function ()Idle Task1
Idle Task

f()

Gain

.9

For Iterator
Subsystem1

for { ... } In 1Out 1

For Iterator
Subsystem

for { ... }In 1 Out 1

Feedback Gain

0.8

Constant

1

Atomic Subsystem Profiling Report.

4-19

file://file://T:/Adoc/matlab/doc/src/toolbox/idelinkmu/ug/sample_subsystem_profiling_report.html

4 Verification

4-20

5

Function Reference

Constructor (p. 5-2) Lists the functions and methods
available by functional groups

File and Project Operations (p. 5-3)
Processor Operations (p. 5-4)
Debug Operations (p. 5-5)
Data Manipulation (p. 5-6)
Status Operations (p. 5-7)

5 Function Reference

Constructor
ghsmulti Object to communicate with Green

Hills MULTI IDE

5-2

File and Project Operations

File and Project Operations
activate Make specified project active
add Add file or data type to active project
build Build or rebuild current project
cd Set IDE working directory
close Close file in IDE window
connect Connect IDE to processor
dir Files and directories in current IDE

window
getbuildopt

ghsmulticonfig Configure Green Hills MULTI
info Information about processor
list Information listings from MULTI

IDE
new New text, project, or configuration

file
open Open specified file
remove Remove file from active project in

IDE window
setbuildopt Set active configuration build options

5-3

5 Function Reference

Processor Operations
halt Halt program execution by processor
load Load file into processor
profile Real-time execution report
reset Stop program execution and reset

processor
restart Restart in IDE
run Execute program loaded on processor

5-4

Debug Operations

Debug Operations
delete Remove breakpoint
insert Insert breakpoint in file

5-5

5 Function Reference

Data Manipulation
address Return address and memory type of

specified symbol
read Read data from processor memory
regread Values from processor registers
regwrite Write data values to registers on

processor
write Write data to processor memory

block

5-6

Status Operations

Status Operations
isrunning Determine whether processor is

executing process
visible Visibility of IDE window

5-7

5 Function Reference

5-8

6

Functions — Alphabetical
List

activate

Purpose Make specified project active

Syntax activate(id,'my_project.gpj')

Description activate(id,'my_project.gpj') uses handle id to activate the
project named my_project.gpj in the IDE. If my_project.gpj does
not exist in the IDE, MATLAB issues an error that explains that the
specified project does not exist.

MULTI allows you to have two or more projects with the same
name open at the same time, such as c:\try11\try11.gpj and
c:\try12\try11.gpj. If you use the following function to activate the
project try11.gpj at the command prompt, where you do not provide
the full path to the project:

activate(id,'try11.gpj')

the software cannot tell which project named try11.gpj to activate and
may not activate the correct one. The following steps describe how the
software decides which project to activate.

1 Search the current Green Hills MULTI IDE directory to find the
first project with the specified name. If the search finds the project,
Embedded IDE Link MU activates the project and returns.

2 If the specified project is not found in the IDE, search the MATLAB
path to find a project with this name. If the search finds the project,
Embedded IDE Link MU activates the project and returns.

3 If the search cannot find a project with the specified name in the
Green Hills MULTI IDE or on the MATLAB path, the software
returns an error saying it could not find the specified project.

See Also new

remove

6-2

add

Purpose Add file or data type to active project

Syntax add(id,'my_file')

Description add(id,'my_file') adds the file my_file to the active project from
the current MATLAB working directory. If you do not have an active
project in the IDE, MATLAB returns an error message and does not add
the file. You can specify the file by name, if the file is in your MATLAB
or Embedded IDE Link MU working directory, or provide the fully
qualified path to the file when the file is not in your working directories.

To add a file add.txt that is in your MATLAB working directory to the
IDE, use the following command:

add(id,'add.txt');

where id is the handle for your multilink object. If the file add.txt is
not in either working directory, the command changes to include the
full path to the file:

add(id,'fullpathtofile\add.txt');

You can add files of all types that the IDE supports. The following table
shows the supported file types.

Support File Type File Extension

C/C++ source files *.cpp, *.c, *.cxx, *.h,
*.hpp, *.hxx

Assembly source files *.asm, *.dsp

Object and Library files *.doj, *.dlb

Linker Command files *.ldf

Green Hills MULTI support file *.vdk

See Also activate

cd

6-3

add

open

remove

6-4

address

Purpose Return address and memory type of specified symbol

Syntax a=address(id,'symbolstring')
a=address(id,'symbolstring','scope')

Description a=address(id,'symbolstring') returns the address and memory type
values for the symbol identified by symbolstring. address returns
the variable in the current (or local) scope. For address to work,
symbolstring must be a symbol in the symbol table for your active
project. There must be a linker command file (lcf) in your project. If
address does not find the specified symbol, a is empty and MATLAB
software returns a warning message. You can use address only after
you load the program file.

a is a two-element array composed of the symbol address offset and
page—a(1) is the address offset and a(2) is the page. read and write
accept a as address inputs.

a=address(id,'symbolstring','scope') adds the input argument
scope that tells the address method whether the symbol is local or
global. Scope accepts one of the following strings:

string Description

global Indicates that symbolstring represents
a global variable

local Indicates that symbolstring represents
a local variable

Use local when the current program scope is the desired scope of the
function.

Example Use address to return the address and page of an array named coef.

a=address(id,'coef')

6-5

address

You can use address as input for read and write. This example uses
read to access the first five elements of the array stored at the address
of the global variable coef. Use write in a similar way.

coefvalues=read(id,address(id,'coef','global'),'int32,5)

See Also load

read

write

6-6

build

Purpose Build or rebuild current project

Syntax build(id)
build(id,timeout)
build(id,'all')
build(id,'all',timeout)

Description build(id) incrementally builds the active project. Incremental builds
recompile only source files in your project that you changed or added
after the most recent build. build uses the file time stamp to determine
whether to recompile a file. After recompiling the source files, build
links the files to make a new program file.

build(id,timeout) incrementally builds the active project with a time
limit for how long MATLABwaits for the build process to complete.
timeout defines the upper limit in seconds for the period the build
routine waits for confirmation that the build process is finished. If the
build process exceeds the timeout period, control returns toMATLAB
immediately with a timeout error. Usually, build causes the processor
to initiate a restart, even if it reaches the timeout limit. The timeout
error in MATLAB indicates that confirmation was not received before
the timeout period expired. The build action continues. Generally, the
build and link process finishes successfully in spite of the timeout error.

build(id,'all') rebuilds all the files in the active project.

build(id,'all',timeout) rebuilds all the files in the active project
applying the timeout limit on how long MATLAB waits for the build
process to complete.

See Also isrunning

open

6-7

cd

Purpose Set IDE working directory

Syntax wd=cd(id)
cd(id,'directory')

Description wd=cd(id) returns the current IDE working directory, where id is a
ghsmulti object that refers to the Green Hills MULTI window, or a
vector of objects.

cd(id,'directory') sets the IDE working directory to 'directory'.
'directory' can be a path string relative to your current working
directory, or an absolute path. The intended directory must exist. cd
does not create a new directory. Setting the IDE directory does not
affect your MATLAB working directory.

cd alters the default directory for open and load. Loading a new
workspace file also changes the working directory for the IDE.

See Also dir

load

open

6-8

close

Purpose Close file in IDE window

Note close(,'text') produces an error.

Syntax close(id,'filename','filetype')

Description close(id,'filename','filetype') closes the file named 'filename'
in the active project in the id IDE window. If filename is not an open
file in the IDE, MATLAB returns a warning message. When you enter
null value [] for filename, close closes the current active file in the
IDE. filename must match exactly the name of the file to close. If you
enter all for the filename, close closes all files in the project that are
of the type specified by filetype.

Note close does not save the file before closing it and it does not
prompt you to save the file. You lose changes you made after the
most-recent save operation. Use the Save option in the IDE to preserve
your changes before you close the file.

The parameter 'filetype' is optional, with the default value of
'text'. Allowed 'filetype' strings are 'project', 'projectgroup',
'text', and 'workspace'. Here are some examples of close operation
commands. In these examples, id is a ghsmulti object handle to the
IDE.

close(id,'all','project')— Closes all open project files

close(id,'my.gpj','project')— Closes the open project my.gpj

close(id,[],'project')— Closes the active open project

close(id,'all','projectgroup')— Close all open project groups.

close(id,'myg.dpg','projectgroup') — Closes the project group:
myg.dpg

6-9

close

close(id,[],'projectgroup')— Closes the active project group

close(id,'all','text') — Close all text files

close(id,'text.c','text')— Closes the text file text.c

close(id,[],'text') — Closes the active text file

See Also add

open

6-10

connect

Purpose Connect IDE to processor

Syntax connect(id)
connect(id,debugconnection)
connect(...,timeout)

Description connect(id) connects the IDE to the processor hardware or simulator.
id is the ghsmulti object that accesses the IDE.

connect(id,debugconnection) connects the IDE to the processor
using the debug connection you specify in debugconnection. Enter
debugconnection as a string enclosed in single quotation marks. id is
the ghsmulti object that references the IDE. Refer to Examples to see
this syntax in use.

connect(...,timeout) adds the optional parameter timeout that
defines how long, in seconds, MATLAB waits for the specified connection
process to complete. If the time-out period expires before the process
returns a completion message, MATLAB generates an error and
returns. Usually the program connection process works correctly in
spite of the error message

Example The input argument stringdebugconnection specify the processor
to connect to with the IDE. This example connects to the
Freescale MPC5554 simulator. The debugconnection string is
simppc -fast -dec -rom_use_entry -cpu=ppc5554.

connect(id,'simppc -fast -dec -rom_use_entry -cpu=ppc5554')

See Also load

run

6-11

delete

Purpose Remove breakpoint

Syntax delete(id,addr)
delete(id,'filename','linenumber')
delete(id,'all')

Description delete(id,addr) removes a breakpoint located at the memory address
addr of the processor. Provide the address input value in hexadecimal
format, such as 0x244fc, or 0x0014.

delete(id,'filename','linenumber') removes the breakpoint
located at the line number 'linenumber' in the file 'filename' for
the processor.

delete(id,'all') removes all breakpoints in the current project
source files.

See Also insert

6-12

dir

Purpose Files and directories in current IDE window

Syntax dir(id)
d=dir(id)

Description dir(id) lists the files and directories in the IDE working directory,
where id is the object that references the IDE. id can be either a single
object, or a vector of objects. When id is a vector, dir returns the files
and directories referenced by each object.

d=dir(id) returns the list of files and directories as an M-by-1
structure in d with the fields for each file and directory shown in the
following table.

Field Name Description

name Name of the file or directory.
date Date of most recent file or directory

modification.
bytes Size of the file in bytes. Directories return 0

for the number of bytes.
isdirectory 0 if this is a file, 1 if this is a directory.
To view the entries in structure d, use an index in the syntax at the
MATLAB prompt, as shown by the following examples.

• d(3) returns the third element in the structure.

• d(10) returns the tenth element in the structure d.

• d(4).date returns the date field value for the fourth structure
element.

See Also cd

open

6-13

display

Purpose Properties of ghsmulti object

Syntax display(id)

Description display(id) displays the properties and property values of the
ghsmulti object id.

For example, when you create id associated with localhost and port
number 4444, display(id) returns the following information in the
MATLAB command window:

display(id)

MULTI Object:
Host Name : localhost
Port Num : 4444
Default timeout : 10.00 secs
MULTI Dir : C:\ghs\multi500\v800\

See Also get in the MATLAB Function Reference

6-14

getbuildopt

Syntax bt=getbuildopt(id)
cs=getbuildopt(id,file)

Description bt=getbuildopt(id) returns an array of structures in bt. Each
structure includes an entry for each defined build tool. This list of
build tools comes from the active project and active build configuration.
Included in the structure is a string that describes the command line
tool options. bt uses the following format for elements in the structures:

• bt(n).name — Name of the build tool.

• bt(n).optstring— Command line switches for build tool in bt(n).

cs=getbuildopt(id,file) returns a string of build options for the
source file specified by file. file must exist in the active project. The
resulting cs string comes from the active build configuration. The
type of source file (from the file extension) defines the build tool used
by the cs string.

6-15

ghsmulti

Purpose Object to communicate with Green Hills MULTI IDE

Syntax id = ghsmulti
id=ghsmulti('propertyname1',propertyvalue1,'propertyname2',…
propertyvalue2,'timeout',value)

Description id = ghsmulti returns object id that communicates with a target
processor. Before you use this command for the first time, use
ghsmulticonfig to configure your MULTI software installation
to identify the location of your MULTI software, your processor
configuration, your debug server and the host name and port number of
the Embedded IDE Link MU service.

ghsmulti creates an interface between MATLAB and Green Hills
MULTI. If this is the first time you have used ghsmulti, you must
supply the properties and property values shown in following table
as input arguments:

Property
Name

Default Value Description

hostname localhost Specifies the name of the machine
hosting theEmbedded IDE Link
MU service. The default host
name indicates that the service
is on the local PC. Replace
localhost with the name you
entered in Host name on
the Embedded IDE Link MU
Configuration dialog box.

portnum 4444 Specifies the port to connect to
the Embedded IDE Link MU
service on the host machine.
Replace portnum with the number
you entered in Port number
on the Embedded IDE Link MU
Configuration dialog box.

6-16

ghsmulti

When you invoke ghsmulti, it starts the Embedded IDE Link MU
service. If you selected the Show server status window option
on theEmbedded IDE Link MU Configuration dialog box (refer to
ghsmulticonfig) when you configured your MULTI installation, the
service appears in your Microsoft Windows task bar. If you clear Show
server status window, the service does not appear.

Parameters that you pass as input arguments to ghsmulti are
interpreted as object property definitions. Each property definition
consists of a property name followed by the desired property value
(often called a PV, or property name/property value, pair).

Note The output object name you provide for ghsmulti cannot begin
with an underscore, such as _id.

id=ghsmulti('hostname','name','portnum','number',...) returns
a ghsmulti object id that you use to interact with a processor in the
IDE from the MATLAB command prompt. If you enter a hostname
or portnum that are not the same as the ones you provided when you
configured your MULTI installation, Embedded IDE Link MU software
returns an error that it could not connect to the specified host and port
and does not create the object.

You use the debugging methods (refer to “Debug Operations” on page
5-5 for the methods available) with this object to access memory and
control the execution of the processor. ghsmulti also enables you to
create an array of objects for a multiprocessor board, where each object
refers to one processor on the board. When id is an array of objects,
any method called with id as an input argument is sent sequentially
to all processors connected to the ghsmulti object. Green Hills MULTI
provides the communication between the IDE and the processor.

After you build the ghsmulti object id, you can review the object
property values with get, but you cannot modify the hostname and
portnum property values. You can use set to change the value of other
properties.

6-17

ghsmulti

id=ghsmulti('propertyname1',propertyvalue1,'propertyname2',…
propertyvalue2,'timeout',value) sets the global time-out value in
seconds to value in id. MATLAB waits for the specified time-out period
to get a response from the IDE application. If the IDE does not
respond within the allotted time-out period, MATLAB exits
from the evaluation of this function.

Examples This example demonstrates ghsmulti using default values.

id = ghsmulti('hostname','localhost','portnum',4444);

returns a handle to the default host and port number—localhost and
4444.

id=ghsmulti('hostname','localhost','portnum',4444)

MULTI Object:
Host Name : localhost
Port Num : 4444
Default timeout : 10.00 secs
MULTI Dir : C:\ghs\multi500\ppc\

See Also ghsmulticonfig

6-18

ghsmulticonfig

Purpose Configure Green Hills MULTI

Syntax ghsmulticonfig

Description ghsmulticonfig launches the Embedded IDE Link MU Configuration
dialog box that you use to configure your Embedded IDE Link MU
software installation to work with MULTI.

Note The Embedded IDE Link MU Configuration dialog box is the
only place you set the host name and port number configuration.

The dialog box, shown in the following figure, provides controls that
specify parameters such as where you installed MULTI and the name of
the host machine to use.

Directory
Tells Embedded IDE Link MU software the path to your Green
Hills MULTI software installation. Enter the full path to the

6-19

ghsmulticonfig

Green Hills MULTI executable, multi.exe, in your installation.
To search for the executable file, click Browse.

If you have more than one version of MULTI, such as PowerPC
(ppc) and V800 (v800), specify the path to multi.exe in the
processor-specific version to use.

If you do not provide or select a correct path to the executable
file, Embedded IDE Link MU software ignores your entry and
returns an error message saying it could not find the executable
multi.exe in the specified or selected directory.

Configuration
Specifies the primary processor family to use to develop your
projects in MULTI. This corresponds to a .tgt file you select
before you can download and execute code. Select your family
file from the list. In many cases, the family_standalone.tgt
option is the appropriate choice. For example, if you develop on
the Freescale MPC5xx, you could select ppc_standalone.tgt.
Embedded IDE Link MU software stores your selection. You do
not need to repeat this setup task unless you change processors.

Debug server
Like the primary target configuration, MULTI needs a debug
connection. This parameter enables you to enter the name of
your debug connection. Embedded IDE Link MU software uses
this connection to specify options about the processor, such as
processor to use, board support library, and processor endianness.
For more information about the Debug server, refer to your Green
Hills MULTI documentation.

For example, if you are using the Freescale
MPC5554 simulator, you could enter the string
simppc -cpu=ppc5554 -dec -rom_use_entry. Valid
strings for specifying simulators in Debug server appear in the
following table.

6-20

ghsmulticonfig

Processor Type Configuration Debug Server Parameter
String

MPC5554 Simulator ppc_standalone.tgt simppc -cpu=ppc5554 -dec
-rom_use_entry

MPC7400 Simulator ppc_standalone.tgt simppc -cpu=7400

BlackFin
537

Simulator bf_standalone.tgt simbf -cpu=bf537 -fast

NEC V850 Simulator v800_standalone.tgt sim850 -cpu=v850

NEC V850 NEC
Minicube

v800_ppc_standalone.tgt 850eserv.mbs 850eserv2
-iecube -noiop
-df=C:/GHS/multi503/v850e/df3283.800
-dclock=4000,32768,swoff

MPC5554 Embedded
target
Green Hills
Probe

ppc_standalone.tgt mpserv_standard.mbs mpserv
-usb

For information about using hardware in your development work,
refer to Connecting to Your Target in the MULTI documentation.
The string you specify for Debug server can be the command
or the name of the connection if you have one configured in the
Connection Organizer in MULTI.

Host name
Specify the name of the machine that runs the Embedded IDE
Link MU service. Enter localhost if the service runs on your PC.
localhost is the only supported host name.

Port number
Specify the port the Embedded IDE Link MU service uses to
communicate with MULTI. The default port number is 4444. If
you change the port value, verify that the port is available for
use. If the port you assign is not available, Embedded IDE Link
MU software returns an error when you try to create a ghsmulti
object.

6-21

ghsmulticonfig

Show server status window
Select this option to display the Embedded IDE Link MU service
status in the Microsoft Windows Task bar. Clearing the option
removes the service from the task bar. Best practice is to select
this option. Keeping this option selected enables the software to
shut down the communication services for Green Hills MULTI
completely.

6-22

halt

Purpose Halt program execution by processor

Syntax halt(id)
halt(id,timeout)

Description halt(id) stops the program running on the processor. After you issue
this command, MATLAB waits for a response from the processor that
the processor has stopped. By default, the wait time is 10 seconds. If 10
seconds elapses before the response arrives, MATLAB returns an error.
In this syntax, the timeout period defaults to the global timeout period
specified in id. Use get(id) to determine the global timeout period.
However, the processor usually stops in spite of the error message.

To resume processing after you halt the processor, use run. Also, the
read(id,'pc') function can determine the memory address where the
processor stopped after you use halt

halt(id,timeout) immediately stops program execution by the
processor. After the processor stops, halt returns to the host. timeout
defines, in seconds, how long the host waits for the processor to stop
running.

timeout defines the maximum time the routine waits for the processor
to stop. If the processor does not stop within the specified timeout
period, the routine returns with a timeout error.

Examples

Use one of the provided demonstration programs to show how halt
works. From the Green Hills MULTI demonstration programs, load and
run one of the demonstration projects.

At the MATLAB prompt, create an object that refers to Green Hills
MULTI

id = ghsmulti

Check whether the program is running on the processor.

isrunning(id)

6-23

halt

ans =

1

id.isrunning % Alternate syntax for checking the run status.

ans =

1

halt(id) % Stop the running application on the processor.

isrunning(id)

ans =

0

Issuing the halt stops the process on the processor. Checking in Green
Hills MULTI confirms that the process has stopped.

See Also isrunning

reset

run

6-24

info

Purpose Information about processor

Syntax iid=info(id)

Description iid=info(id) returns property names and property values associated
with the debugger and processor referred to by id. iid is a structure
containing the information elements and values shown in the following
table:

Structure Element Data Type Description

iid.CurBrkPt String When the debugger is stopped at a breakpoint, the
field reports the index of the breakpoint. Otherwise,
this value is-1.

iid.File String Name of the current file shown in the debugger
source pane.

iid.Line Integer Line number of the cursor position in the file in the
debugger source pane. If no file is open in the source
pane, this value is -1

iid.MultiDir String Full path to your Green Hills MULTI installation
the root directory). For example

'C:\ghs5_01'

iid.PID Double Process ID from the debug server in MULTI.
iid.Procedure String Current procedure in the debugger source pane.
iid.Process Double Program number, defined by MULTI, of the current

program.
iid.Remote String Status of the remote connection, either Connected

or Not connected.
iid.Selection String The string highlighted in the debugger. If there is

no string highlighted, this value is ’null’.

6-25

info

Structure Element Data Type Description

iid.State String State of the loaded program. The possible reported
states appear in the following list:
• About to resume

• Dying

• Just executed

• Just forked

• No child

• Running

• Stopped

• Zombied

For details about the states and their definitions,
refer to your Green Hills MULTI debugger
documentation.

iid.Target Double Unique identifier the indicates the processor family
and variant.

iid.TargetOS Double Real-time operating system on the processor if one
exists. Provides both the major and minor revision
information.

iid.TargetSeries Double Whether the processor belongs to a series of
processors. For details about the processor
series, refer to your Green Hills MULTI debugger
documentation.

info returns valid information when the IDE debugger is connected to
processor hardware or a simulator.

Using info with multiprocessor boards

Method info works with targets that have more than one processor by
returning the information for each processor accessed by the id object

6-26

info

you created with ghsmulti. The structure of information returned is
identical to the single processor case, for every included processor.

Examples On a PC with a simulator configured in MULTI, info returns the
following configuration information after stopping a running simulation:

iid=info(test_obj1)

iid =

CurBrkPt: 0

File: '...\Compute_Sum_and_Diff_multilink\Compute_Sum_and_Diff_main.c'

Line: 3

MultiDir: 'C:\ghs5_01'

PID: 2380

Procedure: 'main'

Process: 0

Remote: 'Connected'

Selection: '(null)'

State: 'Stopped'

Target: 4325392

TargetOS: [2x1 double]

TargetSeries: 3

When you create a new ghsmulti object, the response from info looks
like the following before you load a project.

iid=info(test_obj2)

test_obj2 =

CurBrkPt: []
File: []
Line: []

MultiDir: []
PID: []

Procedure: []

6-27

info

Process: []
Remote: []

Selection: []
State: []

Target: []
TargetOS: []

TargetSeries: []

See Also ghsmulti, dec2hex, get, set

6-28

insert

Purpose Insert breakpoint in file

Syntax insert(id,addr)
insert(id,'filename','linenumber')

Description insert(id,addr) inserts a breakpoint at the memory address
specified by the addr parameter .id identifies the session that adds
the breakpoint.

insert(id,'filename','linenumber') inserts a breakpoint at the
line 'linenumber' in the file 'filename'.

See Also address

delete

run

6-29

isrunning

Purpose Determine whether processor is executing process

Syntax isrunning(id)

Description isrunning(id) returns 1 when the processor is executing a program.
When the processor is halted, isrunning returns 0.

Examples isrunning lets you determine whether the processor is running. After
you load a program to the processor, use isrunning to verify that the
program is running.

id=ghsmulti

MULTI Object:
Host Name : localhost
Port Num : 4444
Default timeout : 10.00 secs
MULTI Dir : C:\ghs\multi500\v800\

visible(id,1)
load(id,'program.dxe','program')
run(id)
isrunning(id)

ans =

1
halt(id)
isrunning(id)

ans =

0

See Also halt

load

6-30

isrunning

run

6-31

list

Purpose Information listings from MULTI IDE

Syntax infolist = list(id,'type')
infolist = list(id,'type',typename)

Description infolist = list(id,type) reads information about your MULTI
project and returns it in infolist. Different types of information and
return formats are possible depending on the input arguments you
supply to the list function call.

Note list does not recognize or return information about variables
that you declare in your code but that are not used or initialized.

The type argument specifies which information listing to return. To
determine the information that list returns, use one of the entries in
the following table.

type String Description

project Return information about the
current project in MULTI

variable Return information about one or
more embedded variables

function Return details about one or more
functions in your project

list returns dynamic MULTI information that you can alter. Returned
listings represent snapshots of the current MULTI IDE configuration
only. Be aware that earlier copies of infolist might contain stale
information.

Also, list may report incorrect information when you make changes
to variables from MATLAB. To report variable information, list uses
the MULTI API, which only knows about variables in MULTI. Your
changes from MATLAB, such as changing the data type of a variable,

6-32

list

do not appear through the API and list. For example, the following
operations return incorrect or old data information from list.

infolist = list(id,'project') returns a vector of structures that
contain project information in the format shown in the following table.

infolist Structure Element Description

infolist(1).name Project file name (with path)
infolist(1).primary Configuration file used for the

project. For more information,
refer to new

infolist(1).compileroptions Compiler options string for the
project

infolist(1).srcfiles Vector of structures that
describes project source files.
Each structure contains the
name and path for each source
file—infolist(1).srcfiles.name

infolist(1).type Shows the project type, either
project or projlib. For more
information, refer to new.

infolist(2).... ...
infolist(n).... ...

infolist = list(id,'variable’) returns a structure of structures that
contains information on all local variables within scope. The list also
includes information on all global variables. If a local variable has the
same symbol name as a global variable, list returns the local variable
information.

infolist = list(id,'variable’,varname) returns information about
the specified variable varname.

6-33

list

infolist = list(id,’variable’,varnamelist) returns information
about variables in a list specified by varnamelist. The information
returned in each structure follows the format in the following table.

infolist Structure Element Description

infolist.varname(1).name Symbol name.
infolist.varname(1).isglobal Indicates whether symbol is global

or local.
infolist.varname(1).location Information about the location of

the symbol.
infolist.varname(1).size Size per dimension.
infolist.varname(1).uclass ghsmulti object class that matches

the type of this symbol.
infolist.varname(1).bitsize Size in bits. More information is

added to the structure depending
on the symbol type.

infolist.(varname1).type Data type of symbol.
infolist.varname(2).... ...
infolist.varname(n).... ...

list uses the variable name as the field name to refer to the structure
information for the variable.

infolist = list(id,'globalvar') returns a structure that contains
information on all global variables.

infolist = list(id,'globalvar',varname) returns a structure that
contains information on the specified global variable.

infolist = list(id,'globalvar',varnamelist) returns a structure
that contains information on global variables in the list. The
returned information follows the same format as the syntax
infolist = list(id,'variable',...).

6-34

list

infolist = list(id,'function') returns a structure that contains
information on all functions in the embedded program.

infolist = list(id,'function',functionname) returns a structure
that contains information on the specified function functionname.

infolist = list(id,'function',functionnamelist) returns a
structure that contains information on the specified functions in
functionnamelist. The returned information follows the format below
when you specify option type as function:

infolist Structure Element Description

infolist.functionname(1).name Function name
infolist.functionname(1).filename Name of file where

function is defined
infolist.functionname(1).address Relevant address

information such as
start address and end
address

infolist.functionname(1).funcvar Variables local to the
function

infolist.functionname(1).uclass ghsmulti object
class that matches
the type of this
symbol—function

infolist.functionname(1).funcdecl Function
declaration—where
information such as
the function return
type is contained

infolist.functionname(1).islibfunc Is this a library
function?

infolist.functionname(1).linepos Start and end line
positions of function

6-35

list

infolist Structure Element Description

infolist.functionname(1).funcinfo Miscellaneous
information about
the function

infolist.functionname(2)... ...
infolist.functionname(n)... ...

To refer to the function structure information, list uses the function
name as the field name.

infolist = list(id,'type') returns a structure that contains
information on all defined data types in the embedded program. This
method includes struct, enum and union data types and excludes
typedefs. The name of a defined type is its C struct tag, enum tag or
union tag. If the C tag is not defined, it is referred to by the MULTI
compiler as '$faken' where n is an assigned number.

infolist = list(id,'type',typename) returns a structure that
contains information on the specified defined data type.

infolist = list(id,'type',typenamelist) returns a structure that
contains information on the specified defined data types in the list.
The returned information follows the format below when you specify
option type as type:

infolist Structure Element Description

infolist.typename(1).type Type name
infolist.typename(1).size Size of this type
infolist.typename(1).uclass ghsmulti object class

that matches the type of
this symbol. Additional
information is added
depending on the type

infolist.typename(2).... ...
infolist.typename(n).... ...

6-36

list

For the field name, list uses the type name to refer to the type
structure information.

The following list provides important information about variable and
field names:

• When a variable name, type name, or function name is not a valid
MATLAB structure field name, list replaces or modifies the name
so it becomes valid.

• In field names that contain the invalid dollar character $, list
replaces the $ with DOLLAR.

• Changing the MATLAB field name does not change the name of the
embedded symbol or type.

Examples This first example shows list used with a variable, providing
information about the variable varname. Notice that the invalid field
name _with_underscore gets changed to Q_with_underscore. To make
the invalid name valid, list inserts the character Q before the name.

varname1 = '_with_underscore'; % Invalid fieldname.
list(id,'variable',varname1);
ans =

Q_with_underscore : [varinfo]
ans. Q_with_underscore
ans=

name: '_with_underscore'
isglobal: 0
location: [1x62 char]

size: 1
uclass: 'numeric'

type: 'int'
bitsize: 16

6-37

list

To demonstrate using list with a defined C type, variable typename1
includes the type argument. Because valid field names cannot contain
the $ character, list changes the $ to DOLLAR.

typename1 = '$fake3'; % Name of defined C type with no tag.
list(id,'type',typename1);
ans =

DOLLARfake0 : [typeinfo]

ans.DOLLARfake0=

type: 'struct $fake0'
size: 1

uclass: 'structure'
sizeof: 1

members: [1x1 struct]

When you request information about a project in MULTI, you see a
listing like the following that includes structures containing details
about your project.

projectinfo=list(id,'project')

projectinfo =

name: 'D:\Work\c6711dskafxr_c6000_rtw\c6711dskafxr.pjt'

type: 'project'

targettype: 'TMS320C67XX'

srcfiles: [69x1 struct]

buildcfg: [3x1 struct]

See Also info

6-38

load

Purpose Load file into processor

Syntax load(id,'filename',timeout)
load(,timeout)

Description load(id,'filename',timeout) transfers file 'my_file.dxe' to the
processor. filename can include a full path to the file, or the name of
a file that is in the current working directory of Green Hills MULTI.
Use the function cd to check or modify the Green Hills MULTIworking
directory. Use this function only with program files that you created by
a Green Hills MULTI build process. When you issue the load command,
the command waits for the period defined by timeout in id for the
process to complete—ten seconds.

load(,timeout) adds the optional parameter timeout that defines
how long, in seconds, MATLAB waits for the specified load process to
complete. If the time-out period expires before the load process returns a
completion message, MATLAB generates an error and returns. Usually
the program load process works correctly in spite of the error message.

See Also cd

dir

open

6-39

new

Purpose New text, project, or configuration file

Syntax new(id,'name','type')

Description new(id,'name','type') creates a new file, project, or build
configuration in the active project. Input argument name specifies the
name assigned to identify the new file, project, or configuration.

When you are creating a new executable project or library project, name
is a filename that can include the full path to the new file. If you omit
the path, new creates the new file or project in your current Green Hills
MULTI working directory.

If your name input argument does not include the file extension, and
you do not include the type argument, new creates a new executable
project in the IDE with the gpj extension.

To define the kind of entity to create, type accepts the strings shown in
the following table.

Type String Description

project Create a new MULTI executable project
in the current IDE instance. Sometimes
this is called a DSP executable file.

projectlib Create a new MULTI library project in
the current IDE instance.

Examples new(id,'my_project.gpj','project') creates a new project
'my_project.gpj' of type project.

The ’project’ argument is optional; the default project type is an
executable project. When you include the gpj extension on the name of
the new project my_project.gpj, new automatically creates a project
file.

6-40

new

new(id,'my_library_project','projectlib') creates a new library
project in the IDE instance that id references. To create the library
project, you must include the 'projectlib' input argument.

See Also activate

close

6-41

open

Purpose Open specified file

Note open(,'text') produces an error.

open(,'program') produces an error. Use load instead.

Syntax open(id,'filename')
open(,'filetype')
open(,timeout)

Description open(id,'filename') opens file filename in the IDE. If you specify
the file extension in filename, open opens the file of that type. If you
omit the file extension from the name, open assumes the file to open is
a project. Files that do not have the .gpj extension or do not have an
extension are assumed to be projects. The following table presents the
possible file types and extensions.

Extension Assumed
File Type

Description

txt, .c, .asm, .cpp, .h,
and all file extensions
not listed elsewhere in
this table

text Treated as text file

gpj or no extension project Treated as Green Hills
MULTI project

no extension—uses
filetype argument in
syntax

program Executable program file

If the file to open does not exist in the current project or directory path,
MATLAB returns a warning and returns control to MATLAB.

open(,'filetype') identifies the type of file to open. This can be
useful when your project includes files of different types that have

6-42

open

the same name or when you want to open a project, project group, or
workspace. Using the input argument filetype overrides the file type
defined by the file extension in the file name. The preceding table
defines the valid file type extensions.

open(,timeout) adds the optional parameter timeout that defines
how long, in seconds, MATLAB waits for the specified load process to
complete. If the time-out period expires before the load process returns
a completion message, MATLAB returns an error. Usually the program
load process works correctly in spite of the error message.

See Also cd

dir

load

new

6-43

profile

Purpose Real-time execution report

Syntax profile(id,'report')

Description profile(id,'report') returns the real-time execution profile report
in HTML and graphical plot forms. The report input argument is
required. When you select Profile real-time execution in the model
configuration parameters, and then build and run your model on a
processor, profile accesses the report of the process execution.

Note Real-time task execution profiling works with hardware only.
Simulators do not support the profiling feature.

To use profile to assess how your program executes in real-time,
complete the following tasks with a Simulink model:

1 Enable real-time execution profiling in the configuration parameters.

2 Select whether to profile by task or subsystem.

3 Build your model.

4 Download your program to the processor.

5 Run the program on the processor.

6 Stop the running program.

7 Use profile at the MATLAB command prompt to access the profiling
reports.

The HTML report contains the sections described in the following table.

6-44

profile

Section Heading Description

Worst case task
turnaround times

Maximum task turnaround time for each
task since model execution started.

Maximum number of
concurrent overruns
for each task

Maximum number of concurrent task
overruns since model execution started.

Analysis of profiling
data recorded over
nnn seconds.

Profiling data was recorded over nnn seconds.
The recorded data for task turnaround times
and task execution times is presented in the
table below this heading.

Task turnaround time is the elapsed time between starting and
finishing the task. If the task is not preempted, task turnaround time
equals the task execution time.

Task execution time is the time between task start and finish when the
task is actually running. It does not include time during which the task
may have been preempted by another task.

Note Task execution time cannot be measured directly. Task profiling
infers the execution time from the task start and finish times, and the
intervening periods during which the task was preempted by another
task.

The execution time calculations do not account for processor time
consumed by the scheduler while switching tasks. In cases where
preemption occurs, the reported task execution times overestimate the
true task execution time.

Task overruns occur when a timer task does not complete before the
same task is scheduled to run again. Depending on how you configure
the real-time scheduler, a task overrun may be handled as a real-time
failure. Alternatively, you might allow a small number of task overruns
to accommodate cases where a task occasionally takes longer than

6-45

profile

normal to complete. If a task overrun occurs, and the same task is
scheduled to run again before the first overrun has been cleared,
concurrent task overruns are said to have occurred.

• Task profiling report

Sample task profiling report

• Subsystem profiling report

Sample subsystem profiling report

See Also load

run

6-46

read

Purpose Read data from processor memory

Syntax mem=read(id,address)
mem=read(…,datatype)
mem=read(…,count)
mem=read(…,memorytype)
mem=read(…,timeout)

Description mem=read(id,address) returns a block of data values from the
memory space of the DSP processor referenced by id. The block to read
begins from the DSP memory location given by the input parameter
address. The data is read starting from address without regard to
type-alignment boundaries in the DSP. Conversely, the byte ordering
defined by the data type is automatically applied.

address is a decimal or hexadecimal representation of a memory
address in the DSP. In all cases, the full memory address consist of
two parts:

• The start address

• The memory type

You can define the memory type value can be explicitly using a numeric
vector representation of the address (see below).

Alternatively, the id object has a default memory type value that
is applied if the memory type value is not explicitly incorporated in
the passed address parameter. In DSP processors with only a single
memory type, it is possible to specify all addresses using the abbreviated
(implied memory type) format by setting the id object memory type
value to zero.

Note You cannot read data from processor memory while the processor
is running.

6-47

read

Provide the address parameter either as a numerical value that is a
decimal representation of the DSP memory address, or as a string that
read converts to the decimal representation of the start address. (Refer
to function hex2dec in the MATLAB Function Reference. read uses
hex2dec to convert the hexadecimal string to a decimal value).

The examples in the following table demonstrate how read uses the
address parameter:

address
Parameter Value

Description

131082 Decimal address specification. The memory
start address is 131082 and memory type is 0.
This is the same as specifying [131082 0].

[131082 1] Decimal address specification. The memory
start address is 131082 and memory type is 1.

'2000A' Hexadecimal address specification provided as
a string entry. The memory start address is
131082 (converted to the decimal equivalent)
and memory type is 0.

It is possible to specify address as a cell array. You can use a
combination of numbers and strings for the start address and memory
type values. For example, the following are valid addresses from cell
array myaddress:

myaddress1 myaddress1{1}=131072;
myadddress1{2}='Program(PM) Memory';

myaddress2 myaddress2{1}='20000';
myadddress2{2}='Program(PM) Memory';

myaddress3 myaddress3{1}=131072; myaddress3{2}=0;

mem=read(…,datatype) where the input argument datatype defines
the interpretation of the raw values read from DSP memory. Parameter
datatype specifies the data format of the raw memory image. The data
is read starting from address without regard to data type alignment

6-48

read

boundaries in the DSP. The byte ordering defined by the data type is
automatically applied. This syntax supports the following MATLAB
data types:

MATLAB Data Type Description

double IEEE double-precision floating
point value

single IEEE single-precision floating
point value

uint8 8-bit unsigned binary integer
value

uint16 16-bit unsigned binary integer
value

uint32 32-bit unsigned binary integer
value

int8 8-bit signed two’s complement
integer value

int16 16-bit signed two’s complement
integer value

int32 32-bit signed two’s complement
integer value

read does not coerce data type alignment. Some combinations of
address and datatype will be difficult for the processor to use.

mem=read(…,count) adds the count input parameter that defines
the dimensions of the returned data block mem. To read a block of
multiple data values. Specify count to determine how many values
to read from address. count can be a scalar value that causes read
to return a column vector that has count values. You can perform
multidimensional reads by passing a vector for count. The elements
in the input vector of count define the dimensions of the returned data
matrix. The memory is read in column-major order. count defines the

6-49

read

dimensions of the returned data array mem as shown in the following
table.

• n — Read n values into a column vector.

• [m,n] — Read m-by-n values into m by n matrix in column-major
order.

• [m,n,...] — Read a multidimensional matrix m-by-n-by…of values
into an m-by-n-by…array.

To read a block of multiple data values, specify the input argument
count that determines how many values to read from address.

mem=read(…,memorytype) adds an optional input argument
memorytype. Object id has a default memory type value 0 that read
applies if the memory type value is not explicitly incorporated into the
passed address parameter.

In processors with only a single memory type, it is possible to specify
all addresses using the implied memory type format by setting the id
memorytype property value to zero. Blackfin and SHARC use different
memory types. Blackfin processors have one memory type. SHARC
processors provide five types. The following table shows the memory
types for both processor families.

String Entry for
memorytype

Numerical Entry for
memorytype

Processor
Support

’program(pm) memory’ 0 Blackfin and
SHARC

’data(dm) memory’ 1 SHARC
’data(dm) short
word memory’

2 SHARC

’external data(dm)
byte memory’

3 SHARC

’boot(prom) memory’ 4 SHARC

6-50

read

mem=read(…,timeout) adds the optional parameter timeout that
defines how long, in seconds, MATLAB waits for the specified read
process to complete. If the time-out period expires before the read
process returns a completion message, MATLAB returns an error and
returns. Usually the read process works correctly in spite of the error
message.

Examples This example reads one 16–bit integer from memory on the processor.

mlvar = read(id,131072,'int16')

131072 is the decimal address of the data to read.

You can read more than one value at a time. This read command
returns 100 32–bit integers from the address 0x20000 and plots the
result in MATLAB.

data = read(id,'20000','int32',100)
plot(double(data))

See Also write

6-51

regread

Purpose Values from processor registers

Syntax reg=regread(id,'regname','represent',timeout)
reg = regread(id,'regname','represent')
reg = regread(id,'regname')

Description reg=regread(id,'regname','represent',timeout) reads the data
value in the regname register of the target processor and returns the
value in reg as a double-precision value. For convenience, regread
converts each return value to the MATLAB double datatype. Making
this conversion lets you manipulate the data in MATLAB. String
regname specifies the name of the source register on the target.
ghsmulti object id defines the target to read from. Valid entries for
regname depend on your target processor.

Note regread does not read 64-bit registers, like the cycle register on
Blackfin processors.

Register names are not case-sensitive — a0 is the same as A0.

For example, the following registers are some of the many available
on the MPC5500 processor:

• ’acc’ — Accumulator A register

• sprg0 through sprg7 — SPR registers

Note Use read (called a direct memory read) to read memory-mapped
registers.

The represent input argument defines the format of the data stored in
regname. Input argument represent takes one of three input strings:

6-52

regread

represent String Description

2scomp Source register contains a signed integer value
in two’s complement format. This is the default
setting when you omit the represent argument.

binary Source register contains an unsigned binary
integer.

ieee Source register contains a floating point 32-bit or
64-bit value in IEEE floating-point format. Use
this only when you are reading from 32 and 64
bit registers on the target.

To limit the time that regread spends transferring data from the
target processor, the optional argument timeout tells the data transfer
process to stop after timeout seconds. timeout is defined as the number
of seconds allowed to complete the read operation. You might find this
useful for limiting prolonged data transfer operations. If you omit the
timeout option in the syntax, regread defaults to the global time-out
defined in id.

reg = regread(id,'regname','represent') does not set the global
time-out value. The time-out value in id applies.

reg = regread(id,'regname') does not define the format of the data
in regname.

Reading and Writing Register Values

Register variables can be difficult to read and write because the
registers which hold their value are not dedicated to storing just the
variable values.

Registers are used as temporary storage locations at any time during
execution. When this temporary storage process occurs, the value of the
variable is temporarily stored somewhere on the stack and returned
later. Therefore, getting the values of register variables during program
execution may return unexpected answers.

6-53

regread

Values that you write to register variables during intermediate times in
program operation may not get reflected in the register.

This is true for local variables as well.

One way to see this is to write a line of code that uses the variable and
see if the result is consistent.

register int a = 100;
int b;
...

b = a + 2;

Reading the register assigned to a may return an incorrect value for a
but if b returns the expected 102 result, nothing is wrong with the code
or Embedded IDE Link MU software .

Examples For the MPC5554 processor, most registers are memory-mapped and
consequently are available using read and write. However, use
regread to read the PC register. The following command demonstrates
how to read the PC register. To identify the target, id is a ghsmulti
object for MULTI.

id.regread('PC','binary')

To tell MATLAB what data type you are reading, the string binary
indicates that the PC register contains a value stored as an unsigned
binary integer.

In response, MATLAB displays

ans =

33824

For processors in the Blackfin family, regread lets you access processor
registers directly. To read the value in general purpose register cycles,
type the following function.

6-54

regread

treg = id.regread('cycles','2scomp');

treg now contains the two’s complement representation of the value
in A0.

See Also read, regwrite, write

6-55

regwrite

Purpose Write data values to registers on processor

Syntax regwrite(id,'regname',value,'represent',timeout)
regwrite(id,'regname',value,'represent')
regwrite(id,'regname',value,)

Description regwrite(id,'regname',value,'represent',timeout) writes the
data in value to the regname register of the target processor. regwrite
converts value from its representation in the MATLAB workspace
to the representation specified by represent. The represent input
argument defines the format of the data when it is stored in regname.
Input argument represent takes one of three input strings:

represent String Description

2scomp Write value to the destination register as
a signed integer value in two’s complement
format. This is the default setting when you
omit the represent argument.

binary Write value to the destination register as an
unsigned binary integer.

ieee Write value to the destination registers as a
floating point 32-bit or 64-bit value in IEEE
floating-point format. Use this only when
you are writing to 32- and 64-bit registers on
the target.

String regname specifies the name of the destination register on the
target. Link id defines the target to write value to. Valid entries for
regname depend on your target processor. Register names are not
case-sensitive — a0 is the same as A0.

For example, the following registers are some of the many available
on the MPC5500 processor:

• ’acc’ — Accumulator A register

6-56

regwrite

• sprg0 through sprg7 — SPR registers

Other processors provide other register sets. Refer to the documentation
for your target processor to determine the registers for the processor.

Note Use write (called a direct memory write) to write memory-mapped
registers.

To limit the time that regwrite spends transferring data to the target
processor, the optional argument timeout tells the data transfer process
to stop after timeout seconds. timeout is defined as the number of
seconds allowed to complete the write operation. You might find this
useful for limiting prolonged data transfer operations.

If you omit the timeout input argument in the syntax, regwrite
defaults to the global time-out defined in id. If the write operation
exceeds the time specified, regwrite returns with a time-out error.
Generally, time-out errors do not stop the register write process. The
write process stops while waiting for MULTI to respond that the write
operation is complete.

regwrite(id,'regname',value,'represent') omits the timeout
input argument and does not change the time-out value specified in id.

regwrite(id,'regname',value,) omits the represent input
argument. Writing the data does not reformat the data written to
regname.

Reading and Writing Register Values

Register variables can be difficult to read and write because the
registers which hold their value are not dedicated to storing just the
variable values.

Registers are used as temporary storage locations at any time during
execution. When this temporary storage process occurs, the value of the
variable is temporarily stored somewhere on the stack and returned

6-57

regwrite

later. Therefore, getting the values of register variables during program
execution may return unexpected answers.

Values that you write to register variables during intermediate times in
program operation may not get reflected in the register.

This is true for any local variables as well.

One way to see this is to write a line of code that uses the variable and
see if result is consistent.

register int a = 100;
int b;
...

b = a + 2;

Reading the register assigned to a may return an incorrect value for a
but if b returns the expected 102 result, nothing is wrong with the code
or Embedded IDE Link MU software.

Examples To write a new value to the PC register on a C5xxx family processor,
enter

regwrite(id,'pc',hex2dec('100'),'binary')

specifying that you are writing the value 256 (the decimal value of
0x100) to register pc as binary data.

To write a 64-bit value to a register pair, such as B1:B0, the following
syntax specifies the value as a string, representation, and target
registers.

regwrite(id,'b1:b0',hex2dec('1010'),'ieee')

Registers B1:B0 now contain the value 4112 in double-precision format.

See Also read, regread, write

6-58

remove

Purpose Remove file from active project in IDE window

Syntax remove(id,'filename','filetype')

Description remove(id,'filename','filetype') removes the file named filename
from the active project in the id window of the IDE. If the file does not
exist, MATLAB returns a warning and does not remove any files. The
filetype argument is optional, with the default value of text. Possible
values for filetype are: project and text.

See Also add

cd

open

6-59

reset

Purpose Stop program execution and reset processor

Syntax reset(id,timeout)

Description reset(id,timeout) stops the program executing on the processor and
asynchronously performs a processor reset, returning all processor
register contents to their power-up settings. reset returns immediately
after the processor halt.

The timeout is an optional parameter, with the default value set to the
global default value. The timeout determines how long, in seconds,
MATLAB waits for the processor to halt.

See Also halt

load

run

6-60

restart

Purpose Restart in IDE

Syntax restart(id)
restart(id,timeout)

Description restart(id) issues a restart command in the MULTI debugger. The
behavior of the restart process depends on the processor. Refer to your
Green Hills MULTI documentation for details about using restart with
various processors.

When id is an array that contains more than one processor, each
processor calls restart in sequence.

restart(id,timeout) adds the optional timeout input argument.
timeout defines an upper limit in seconds on the period the restart
routine waits for completion of the restart process. If the time-out period
is exceeded, restart returns control to MATLAB with a time-out error.
In general, restart causes the processor to initiate a restart, even if the
time-out period expires. The time-out error indicates that the restart
confirmation was not received before the time-out period elapsed.

See Also halt

isrunning

run

6-61

run

Purpose Execute program loaded on processor

Syntax run(id)
run(id,'runopt')
run(…,timeout)

Description run(id) runs the program file loaded on the referenced processor,
returning immediately after the processor starts running. Program
execution starts from the location of program counter (PC). Usually,
the PC is positioned at the top of the executable file. However, if you
stopped a running program with halt, the PC may be anywhere in the
program. run starts the program from the PC current location.

If id references more the one processor, each processors calls run in
sequence.

run(id,'runopt') includes the parameter runopt that defines the
action of the run method. The options for runopt are listed in the
following table.

runopt string Description

run Executes the run and waits to confirm that
the processor is running, and then returns to
MATLAB.

runtohalt Executes the run but then waits until the
processor halts before returning. The halt can
be the result of the PC reaching a breakpoint, or
by direct interaction with Green Hills MULTI,
or by the normal program exit process.

run(…,timeout) adds input argument timeout, to allow you to set
the time out to a value different from the global timeout value. The
timeout value specifies how long, in seconds, MATLAB waits for the
processor to start executing the loaded program before returning.

Most often, the run and runtohalt options cause the processor to
initiate execution, even when a timeout is reached. The timeout

6-62

run

indicates that the confirmation was not received before the timeout
period elapsed.

See Also halt

load

reset

6-63

setbuildopt

Purpose Set active configuration build options

Syntax setbuildopt(id,tool,ostr)
setbuildopt(id,file,ostr)

Description setbuildopt(id,tool,ostr) configures the build options to match
the passed OSTR on the specified build tool. This replaces the switch
settings that are applied when you invoke the command line tool. For
example, a build tool could be a compiler, linker or assembler. To be
sure the tool name is defined correctly, use the getbuildopt command
to read a list of defined build tools. If MULTI does not recognize OSTR,
setbuildopt sets all switch settings to default values for the build
tool specified by tool.

setbuildopt(id,file,ostr) configures the build options to match the
passed OSTR on the specified source file file. The source file must
exist in the active project.

See Also activate

getbuildopt

6-64

visible

Purpose Visibility of IDE window

Note visible produces an error.

Syntax visible(id,state)

Description visible(id,state) sets the visibility state of the IDE window defined
by id. Possible values of state are 0 for not visible, and 1 for visible.
Setting the state to 1 forces the IDE to be visible on the desktop so you
can interact with it. Setting to 0 hides the IDE—the IDE runs in the
background. In the not visible state, you interact with the IDE from the
MATLAB command line. When you create a ghsmulti object, the IDE
visibility is set to 0 and the IDE is not visible.

See Also info

6-65

write

Purpose Write data to processor memory block

Syntax mem=write(id,address,data)
mem=write(…,datatype)
mem=write(…,memorytype)
mem=write(…,timeout)

Description mem=write(id,address,data) writes data, a collection of values, to the
memory space of the DSP processor referenced by id. Input argument
data is a scalar, vector or array of values to write to the memory of the
processor. The block to write begins from the DSP memory location
given by the input parameter address.

The data is written starting from address without regard to
type-alignment boundaries in the DSP. Conversely, the byte ordering of
the data type is automatically applied.

Note You cannot write data to processor memory while the processor
is running.

address is a decimal or hexadecimal representation of a memory
address in the processor. In all cases, the full memory address consist of
two parts: the start address and the memory type. The memory type
value can be explicitly defined using a numeric vector representation
of the address (see below).

Alternatively, the id object has a default memory type value which is
applied if the memory type value is not explicitly incorporated into
the passed address parameter. In DSP processors with only a single
memory type, by setting the id object memory type value to zero it is
possible to specify all addresses using the abbreviated (implied memory
type) format.

You provide the address parameter either as a numerical value that is
a decimal representation of the DSP memory address, or as a string
that write converts to the decimal representation of the start address.

6-66

write

(Refer to function hex2dec in the MATLAB Function Reference that
read uses to convert the hexadecimal string to a decimal value).

To demonstrate how write uses address, here are some examples of
the address parameter:

address
Parameter
Value

Description

131082 Decimal address specification. The memory start
address is 131082 and memory type is 0. This is the
same as specifying [131082 0].

[131082 1] Decimal address specification. The memory start
address is 131082 and memory type is 1.

'2000A' Hexadecimal address specification provided as a string
entry. The memory start address is 131082 (converted
to the decimal equivalent) and memory type is 0.

It is possible to specify address as cell array, in which case you can use
a combination of numbers and strings for the start address and memory
type values. For example, the following are valid addresses from cell
array myaddress:

myaddress1 myaddress1{1} = 131072; myadddress1{2} =
'Program(PM) Memory';

myaddress2 myaddress2{1} = '20000'; myadddress2{2} =
'Program(PM) Memory';

myaddress3 myaddress3{1} = 131072; myaddress3{2} = 0;

mem=write(…,datatype) where the input argument datatype defines
the interpretation of the raw values written to DSP memory. Parameter
datatype specifies the data format of the raw memory image. The
data is written starting from address without regard to data type
alignment boundaries in the DSP. The byte ordering of the data type
is automatically applied. The following MATLAB data types are
supported:

6-67

write

MATLAB Data Type Description

double IEEE double-precision floating
point value

single IEEE single-precision floating
point value

uint8 8-bit unsigned binary integer
value

uint16 16-bit unsigned binary integer
value

uint32 32-bit unsigned binary integer
value

int8 8-bit signed two’s complement
integer value

int16 16-bit signed two’s complement
integer value

int32 32-bit signed two’s complement
integer value

write does not coerce data type alignment. Some combinations of
address and datatype will be difficult for the processor to use.

mem=write(…,memorytype) adds an optional input argument
memorytype. Object id has a default memory type value 0 that write
applies if the memory type value is not explicitly incorporated into the
passed address parameter. In processors with only a single memory
type, it is possible to specify all addresses using the implied memory
type format by setting the id memorytype property value to zero.

Blackfin and SHARC use different memory types. Blackfin processors
have one memory type. SHARC processors provide five types. The
following table shows the memory types for both processor families.

6-68

write

String Entry for
memorytype

Numerical Entry
for memorytype

Processor Support

’program(pm)
memory’

0 Blackfin and SHARC

’data(dm) memory’ 1 SHARC
’data(dm) short
word memory’

2 SHARC

’external
data(dm) byte
memory’

3 SHARC

’boot(prom)
memory’

4 SHARC

mem=write(…,timeout) adds the optional parameter timeout that
defines how long, in seconds, MATLAB waits for the specified write
process to complete. If the timeout period expires before the write
process returns a completion message, MATLAB throws an error and
returns. Usually the process works correctly in spite of the error
message.

Examples These three syntax examples demonstrate how to use write in some
common ways. In the first example, write an array of 16–bit integers to
location [131072 1].

write(id,[131072 1],int16([1:100]));

Now write a single-precision IEEE floating point value (32-bits) at
address 2000A(Hex).

write(id,'2000A',single(23.5));

For the third example, write a 2-D array of integers in row-major format
(standard C programming format) at address 131072 (decimal).

mlarr = int32([1:10;101:110]);

6-69

write

write(id,131072,mlarr');

See Also hex2dec in the MATLAB Function Reference

read

6-70

7

Block Reference

Blackfin Support (p. 7-2) Work with Analog Devices Blackfin
processors

Core Support (p. 7-3) Work with all supported processors
MPC5500 Support (p. 7-4) Work with Freescale processors
MPC7400 Support (p. 7-5) Work with Freescale microprocessors
Target Preferences (p. 7-6) Set target preferences for all

supported processors

7 Block Reference

Blackfin Support
Hardware Interrupt Generate Interrupt Service Routine
Target Preferences Configure model for

supported-processors

7-2

Core Support

Core Support
Idle Task Create free-running task
Memory Allocate Allocate memory section on

supported processors
Memory Copy Copy to and from memory section

7-3

7 Block Reference

MPC5500 Support

HW/SW Interrupt Generate Interrupt Service Routine
Target Preferences Configure model for

supported-processors

7-4

MPC7400 Support

MPC7400 Support
HW Interrupt Generate Interrupt Service Routine
Target Preferences Configure model for

supported-processors

7-5

7 Block Reference

Target Preferences

Target Preferences Configure model for
supported-processors

7-6

8

Blocks — Alphabetical List

Hardware Interrupt

Purpose Generate Interrupt Service Routine

Library Blackfin DSP Support in Embedded IDE Link MU

Description Create interrupt service routines (ISR) in the software generated by the
build process. When you incorporate this block in your model, code
generation results in ISRs on the processor that run the processes
that are downstream from this block or an Idle Task block connected
to this block. Core interrupts trigger the ISRs. System interrupts
trigger the core interrupts. In the following figure, you see the mapping
possibilities between system interrupts and core interrupts.

Interrupts

Blackfin processors support the interrupt numbers shown in the
following table. Some Blackfin processors do not support all of the
system interrupts.

Interrupt
Description

Valid Range in Parameter

Core interrupt
numbers

7 to 15

System interrupt
numbers

0 to 31 (The upper end value depends on the
processor. May be less than 31.)

8-2

Hardware Interrupt

Dialog
Box

Core interrupt numbers
Specify a vector of one or more interrupt numbers for the interrupt
service routines (ISR) to install. The valid range is 7 to 15, where
7 through 13 are hardware driven, and 14 and 15 are software
driven. Core interrupts numbered 0 to 6 are reserved and cannot
be entered in this field.

The width of the block output signal corresponds to the number of
interrupt values you specify in this field. Triggering of each ISR
depends on the core interrupt value, the system interrupt value,
and the preemption flag you enter for each interrupt. These three
values define how the code and processor respond to interrupts
during asynchronous scheduler operations.

8-3

Hardware Interrupt

System interrupt numbers
System interrupt numbers identify system interrupts to map to
core interrupts. Enter one or more values as a vector. The valid
range is 0 through 31, although the valid range depends on your
processor. Some processors do not support the full range of 32
system interrupts. The software does not test for valid system
interrupt values. You must verify that your values are valid for
your processor. You must specify at least one system interrupt
number to use asynchronous scheduling.

The block maps the first interrupt value in this field to the first
core interrupt value you enter in Core interrupt numbers,
it maps the second system interrupt value to the second core
interrupt value, and so on until it has mapped all of the system
interrupt values to core interrupt values. You cannot map more
than one system interrupt to the same core interrupt. Therefore,
you can enter one system interrupt value in this field and map it
to more than one core interrupt. You cannot enter more than one
value in this field and map the values to one core interrupt.

When you trigger one of the system interrupts in this field, the
block triggers the ISR associated with the core interrupt that is
mapped to the system interrupt.

Simulink task priorities
Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink task
priority specifies the Simulink priority of the downstream blocks.
Specify an array of priorities corresponding to the interrupt
numbers entered in Interrupt numbers.

Proper code generation requires rate transition code (see Rate
Transitions and Asynchronous Blocks). The task priority values
ensure absolute time integrity when the asynchronous task must
obtain real time from its base rate or its caller. Typically, assign
priorities for these asynchronous tasks that are higher than the
priorities assigned to periodic tasks.

8-4

Hardware Interrupt

Preemption flags: preemptable – 1, non-preemptable – 0
Higher priority interrupts can preempt interrupts that have lower
priority. To control this preemption, use the preemption flags to
specify whether an interrupt can be preempted.

• Entering 1 indicates the corresponding core interrupt can be
preempted.

• Entering 0 indicates the corresponding interrupt cannot be
preempted.

When Core interrupt numbers contains more than one
interrupt priority, you can assign different preemption flags to
each interrupt by entering a vector of preemption flag values
that correspond to the order of the interrupts in Core interrupt
numbers. If Core interrupt numbers contains more than one
interrupt, and you enter only one flag value in this field, that
status applies to all interrupts.

For example, the default settings [0 1]indicate that the interrupt
with value 10 in Core interrupt numbers is not preemptible
and the value 12 interrupt can be preempted.

Enable simulation input
When you select this option, Simulink adds an input port to the
Hardware Interrupt block. This port receives input only during
simulation. Connect one or more simulated interrupt sources to
the simulation input.

8-5

HW Interrupt

Purpose Generate Interrupt Service Routine

Library MPC7400 Support in Embedded IDE Link MU

Description The block creates ISRs for three processor interrupts—External,
Machine check and System reset. When you incorporate this block in
your model, code generation results in ISRs on the processor that run
the blocks downstream from this block. For more information about
these interrupts, refer to your MPC7400 documentation.

When you enable more than one interrupt on the block dialog box,
the block multiplexes the ISR outputs onto the output port on the
block. To resolve the different ISRs, connect the output port IRQ to
a Demux block. Connect the demultiplexed outputs to downstream
blocks or subsystems. Refer to Examples to see the multiple interrupt
configuration in a model.

8-6

HW Interrupt

Dialog
Box

External interrupt
Interrupt generated by an external system that asserts the intr
pin of the 7400 microprocessor.

Machine check interrupt
Enable the asynchronous, nonmaskable machine check exception
provided by the processor. The exception responds to the
conditions described in the MPC7400 documentation.

System reset interrupt
Enable the asynchronous, nonmaskable System interrupt
exception provided by the processor. The exception responds to
the conditions described in the MPC7400 documentation.

Enable simulation input
Select this option to have Simulink add an input port to the HW
Interrupt block. This port receives input only during simulation.
Connect one or more simulated interrupt sources to the input to
drive the model interrupt processing.

8-7

HW Interrupt

Example The following model shows the HW Interrupt block triggering a
subsystem. The interrupt block is configured to respond to external
interrupts.

Interrupt Driven
Subsystem

function ()Interrupt

IRQ

MPC 7400

Hw Interrupt

Here is the block mask.

When your peripherals assert the external interrupt pin on the
processor, the code generated by the HW Interrupt block during the

8-8

HW Interrupt

project build process accepts the interrupt and triggers the attached
subsystem through an ISR.

When you select more than one interrupt, connect the output of the
block to a Demux block to separate the ISRs, as shown in the following
model:

Demux

Machine Check Interrupt
Driven Subsystem

function ()
Interrupt

IRQ

MPC 7400

Hw Interrupt

External Interrupt
Driven Subsystem

function ()

Here is the block mask showing the external and Machine check
interrupts selected.

8-9

HW Interrupt

To test your interrupt configuration in simulation, select Enable
simulation input on the block dialog box and then input a signal to
the block to simulate the external interrupt.

See Also Idle Task

Memory Allocate

Memory Copy

8-10

HW/SW Interrupt

Purpose Generate Interrupt Service Routine

Library MPC5500 Support in Embedded IDE Link MU

Description Create interrupt service routines (ISR) in the software generated by
the build process. When you incorporate this block in your model,
code generation results in ISRs on the processor that either run the
processes that are downstream from this block or trigger an Idle Task
block connected to this block. Core interrupts trigger the ISRs. System
interrupts trigger the core interrupts.

8-11

HW/SW Interrupt

Dialog
Box

Core interrupt numbers
Specify a vector of interrupt numbers for the interrupts to
install. The block services these interrupts. When your model
or code raises one of these interrupts, either through hardware
or software, this block reacts to the interrupt and runs the
associated downstream block or function. The valid range or
interrupts depends on the processor. For example, MPC5553
processors support 212 interrupts. MPC5554 processors support
308 interrupts. Each interrupt in the row vector must be unique.
Interrupts that you do not specify in this parameter cause system
failures if your project raises them.

The width of the block output signal corresponds to the number
of interrupt numbers specified in this field. The values in this

8-12

HW/SW Interrupt

field and the preemption flag entries in Preemption flags:
preemptible-1, non-preemptible-0 define how the code and
processor handle interrupts during asynchronous scheduler
operations.

System interrupt priorities (0–15, 15 being the highest priority)
Each output of the HW/SW Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink task
priority specifies the Simulink priority of the downstream blocks.
Specify an array of priorities corresponding to the interrupt
numbers entered in Core interrupt numbers. In the default
settings shown in the figure, interrupts 3 and 5 have the same
priority value—7.

Proper code generation requires rate transition code (see Rate
Transitions and Asynchronous Blocks). The task priority values
ensure absolute time integrity when the asynchronous task must
obtain real time from its base rate or its caller. Typically, assign
priorities for these asynchronous tasks that are higher than the
priorities assigned to periodic tasks.

If multiple interrupts share the same priority and are asserted
simultaneously, the block selects the lowest numbered interrupt
first.

Preemption flags: preemptible – 1, non-preemptible – 0
Higher-priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

• Entering 1 indicates that the interrupt can be preempted.

• Entering 0 indicates the interrupt cannot be preempted.

You cannot set a task that has priority higher than the base rate
to be preemptable.

When Interrupt numbers contains more than one interrupt
value, you can assign different preemption flags to each interrupt

8-13

HW/SW Interrupt

by entering a vector of flag values to correspond to the order of
the interrupts in Interrupt numbers. If Interrupt numbers
contains more than one interrupt, and you enter only one flag
value in this field, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 5
in Interrupt numbers is not preemptible and the priority 8
interrupt can be preempted.

Software vector mode
Select this option to put the block and processor in software vector
mode. Enabling this option creates a common interrupt handler.
Clearing this option puts the processor in hardware vector mode.
Refer to the MULTI documentation for more information about
the modes.

Enable simulation input
When you select this option, Simulink adds an input port to
the HW/SW Interrupt block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

8-14

Idle Task

Purpose Create free-running task

Library Core Support in Embedded IDE Link MU

Description The Idle Task block, and the subsystem connected to it, specify one
or more functions to execute as background tasks. All tasks executed
through the Idle Task block are of the lowest priority, lower than that of
the base-rate task.

Vectorized Output

The block output comprises a set of vectors—the task numbers vector
and the preemption flag or flags vector. Any preemption flag vector must
be the same length as the number of tasks vector unless the preemption
flag vector has only one element. The value of the preemption flag
determines whether a given interrupt (and corresponding task) is
preemptible. Preemption overrides prioritization. A lower-priority,
nonpreemptible task can preempt a higher-priority, preemptible task.

When the preemption flag vector has only one element, that element
value applies to all functions in the downstream subsystem as defined
by the task numbers in the task number vector. If the preemption flag
vector has the same number of elements as the task number vector, each
task defined in the task number vector has a preemption status defined
by the value of the corresponding element in the preemption flag vector.

8-15

Idle Task

Dialog
Box

Task numbers
Identifies the created tasks by number. Enter as many tasks as
you need by entering a vector of integers. The default values
are [1,2], to indicate that the downstream subsystem has two
functions.

The values you enter determine the execution order of the
functions in the downstream subsystem, while the number of
values you enter corresponds to the number of functions in the
downstream subsystem.

Enter a vector containing the same number of elements as the
number of functions in the downstream subsystem. This vector
can contain no more than 16 elements, and the values must be
from 0 to 15 inclusive.

The value of the first element in the vector determines the order
in which the first function in the subsystem is executed. Similarly,

8-16

Idle Task

the value of the second element determines the order in which the
second function in the subsystem is executed, and so on.

For example, entering the vector [2,3,1] in this field indicates
that there are three functions to be executed, and that the third
function is executed first, the first function is executed second,
and the second function is executed third. After all functions
are executed, the Idle Task block cycles back and repeats the
execution of the functions in the same order.

Preemption flags
Higher-priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

• Entering 1 indicates that the interrupt can be preempted.

• Entering 0 indicates the interrupt cannot be preempted.

When Task numbers contains more than one task, you can
assign different preemption flags to each task by entering a vector
of flag values, corresponding to the order of the tasks in Task
numbers. If Task numbers contains more than one task, and
you enter only one flag value in this field, that preemption setting
applies to all tasks.

For example, the default settings [0 1] indicate the task with
priority 1 in Task numbers is not preemptible, and the priority 2
task can be preempted.

Enable simulation input
When you select this option, Simulink adds an input port to the
Idle Task block. This port receives input only during simulation.
Connect one or more simulated interrupt sources to the simulation
input.

8-17

Idle Task

Note Select this check box to test asynchronous interrupt processing
behavior in Simulink.

8-18

Memory Allocate

Purpose Allocate memory section on supported processors

Library Core Support in Embedded Embedded IDE Link MU

Description On your processor, this block directs the Green Hills MULTI compiler
to allocate memory for a new variable you specify. Parameters in the
block dialog box let you specify the variable name, the alignment of the
variable in memory, the data type of the variable, and other features
that fully define the memory required.

The block does not verify whether the entries for your variable are
valid, such as checking the variable name, data type, or section. You
must ensure that all variable names are valid, that they use valid data
types, and that all section names you specify are valid as well.

The block does not have input or output ports. It only allocates a
memory location. You do not connect it to other blocks in your model.

Dialog
Box

The block dialog box comprises multiple tabs:

• Memory — Allocate the memory for storing variables. Specify the
data type and size.

• Section — Specify the memory section in which to allocate the
variable.

The dialog box images show all of the available parameters enabled.
Some of the parameters shown do not appear until you select one or
more other parameters.

8-19

Memory Allocate

The following sections describe the contents of each pane in the dialog
box.

8-20

Memory Allocate

Memory Parameters

You find the following memory parameters on this tab.

Variable name
Specify the name of the variable to allocate. The variable is
allocated in the generated code.

Specify variable alignment
Select this option to direct the compiler to align the variable in
Variable name to an alignment boundary. When you select this
option, theMemory alignment boundary parameter appears so

8-21

Memory Allocate

you can specify the alignment. Use this parameter and Memory
alignment boundary when your processor requires this feature.

Memory alignment boundary
After you select Specify variable alignment, this option enables
you to specify the alignment boundary in bytes. If your variable
contains more than one value, such as a vector or an array, the
elements are aligned according to rules applied by the compiler.

Data type
Defines the data type for the variable. Select from the list of types
available.

Specify data type qualifier
Selecting this enables Data type qualifier so you can specify the
qualifier to apply to your variable.

Data type qualifier
After you select Specify data type qualifier, you enter the
desired qualifier here. Volatile is the default qualifier. Enter
the qualifier you need as text. Common qualifiers are static and
register. The block does not check for valid qualifiers.

Data dimension
Specifies the number of elements of the type you specify in Data
type. Enter an integer here for the number of elements.

Initialize memory
Directs the block to initialize the memory location to a fixed value
before processing.

Initial value
Specifies the initialization value for the variable. At run time, the
block sets the memory location to this value.

8-22

Memory Allocate

Section Parameters

Parameters on this pane specify the section in memory to store the
variable.

Specify memory section
Selecting this parameter enables you to specify the memory
section to allocate space for the variable. Enter either one of the
standard memory sections or a custom section that you declare
elsewhere in your code.

8-23

Memory Allocate

Memory section
Identify a specific memory section to allocate the variable in
Variable name. Verify that the section has sufficient space
to store your variable. After you specify a memory section by
selecting Specify memory section and entering the section
name in Memory section, use Bind memory section to bind
the memory section to a location.

See Also Memory Copy

8-24

Memory Copy

Purpose Copy to and from memory section

Library Core Support in Embedded IDE Link MU

Description In generated code, this block copies variables or data from and to target
memory as configured by the block parameters. Your model can contain
as many of these blocks as you require to manipulate memory on your
target.

Each block works with one variable, address, or set of addresses
provided to the block. Parameters for the block let you specify both
the source and destination for the memory copy, as well as options for
initializing the memory locations.

Using parameters provided by the block, you can change options like
the memory stride and offset at run time. In addition, by selecting
various parameters in the block, you can write to memory at program
initialization, at program termination, and at every sample time. The
initialization process occurs once, rather than occurring for every read
and write operation.

With the custom source code options, the block enables you to add
custom C source code before and after each memory read and write
(copy) operation. You can use the custom code capability to lock and
unlock registers before and after accessing them. For example, some
processors have registers that you may need to unlock and lock with
EALLOW and EDIS macros before and after your program accesses
them.

Block Operations

This block performs operations at three periods during program
execution—initialization, real-time operations, and termination. With
the options for setting memory initialization and termination, you
control when and how the block initializes memory, copies to and
from memory, and terminates memory operations. The parameters
enable you to turn on and off memory operations in all three periods
independently.

8-25

Memory Copy

Used in combination with the Memory Allocate block, this block
supports building custom device drivers, such as PCI bus drivers or
codec-style drivers, by letting you manipulate and allocate memory.
This block does not require the Memory Allocate block to be in the
model.

In a simulation, this block does not perform any operation. The block
output is not defined.

Copy Memory

When you employ this block to copy an individual data element from
the source to the destination, the block copies the element from the
source in the source data type, and then casts the data element to the
destination data type as provided in the block parameters.

Dialog
Box

The block dialog box contains multiple tabs:

• Source — Identifies the sequential memory location to copy from.
Specify the data type, size, and other attributes of the source variable.

• Destination — Specify the memory location to copy the source to.
Here you also specify the attributes of the destination.

• Options— Select various parameters to control the copy process.

The dialog box images show many of the available parameters enabled.
Some parameters shown do not appear until you select one or more
other parameters. Some parameters are not shown in the figures, but
the text describes them and how to make them available.

8-26

Memory Copy

Sections that follow describe the parameters on each tab in the dialog
box.

8-27

Memory Copy

Source Parameters

Copy from
Select the source of the data to copy. Choose one of the entries
on the list:

• Input port— This source reads the data from the block input
port.

• Specified address — This source reads the data at the
specified location in Specify address source and Address.

8-28

Memory Copy

• Specified source code symbol — This source tells the
block to read the symbol (variable) you enter in Source code
symbol. When you select this copy from option, you enable the
Source code symbol parameter.

Note If you do not select the Input port option for Copy
from, you must change the Data type parameter setting from
the default Inherit from input port to one of the data types
on the Data type list. If you do not make the change, you
receive an error message that the data type cannot be inherited
because the input port does not exist.

Depending on the choice you make for Copy from, you see other
parameters that let you configure the source of the data to copy.

Specify address source
This parameter directs the block to get the address for the
variable either from an entry in Address or from the input port to
the block. Select either Specify via dialog or Input port from
the list. Selecting Specify via dialog activates the Address
parameter for you to enter the address for the variable.

When you select Input port, the port label on the block changes
to &src, indicating that the block expects the address to come
from the input port. Being able to change the address dynamically
lets you use the block to copy different variables by providing the
variable address from an upstream block in your model.

Source code symbol
Specify the symbol (variable) in the source code symbol table
to copy. The symbol table for your program must include this
symbol. The block does not verify that the symbol exists and uses
valid syntax. Enter a string to specify the symbol exactly as you
use it in your code.

8-29

Memory Copy

Address
When you select Specify via dialog for the address source, you
enter the variable address here. Addresses should be in decimal
form. Enter either the decimal address or the address as a
hexadecimal string with single quotations marks and use hex2dec
to convert the address to the proper format. The following
example converts Ox1000 to decimal form.

4096 = hex2dec('1000');

For this example, you could enter either 4096 or hex2dec('1000')
as the address.

Data type
Use this parameter to specify the type of data that your source
uses. The list includes the supported data types, such as int8,
uint32, and Boolean, and the option Inherit from input port
for inheriting the data type for the variable from the block input
port.

Data length
Specifies the number of elements to copy from the source location.
Each element has the data type specified in Data type.

Use offset when reading
When you are reading the input, use this parameter to specify
an offset for the input read. The offset value is in elements with
the assigned data type. The Specify offset source parameter
becomes available when you check this option.

Specify offset source
The block provides two sources for the offset — Input port and
Specify via dialog. Selecting Input port configures the block
input to read the offset value by adding an input port labeled
src ofs. This port enables your program to change the offset
dynamically during execution by providing the offset value as an
input to the block. If you select Specify via dialog, you enable
the Offset parameter in this dialog box so you can enter the offset
to use when reading the input data.

8-30

Memory Copy

Offset
Offset tells the block whether to copy the first element of the
data at the input address or value, or skip one or more values
before starting to copy the input to the destination. Offset defines
how many values to skip before copying the first value to the
destination. Offset equal to one is the default value and Offset
accepts only positive integers of one or greater.

Stride
Stride lets you specify the spacing for reading the input. By
default, the stride value is one, meaning the generated code reads
the input data sequentially. When you add a stride value that
is not equal to one, the block reads the input data elements not
sequentially, but by skipping spaces in the source address equal
to the stride. Stride must be a positive integer.

The next two figures help explain the stride concept. In the first
figure you see data copied without any stride. Following that
figure, the second figure shows a stride value of two applied
to reading the input when the block is copying the input to an
output location. You can specify a stride value for the output with
parameter Stride on the Destination pane. Compare stride with
offset to see the differences.

8-31

Memory Copy

������
����
���
���

���
��
���
���

�

�

�

�

�

�

��

!

"

�

�

�

�

�

�

��

!

"

#�������
��� ���
$��������
��� ���
%��&�
��'�()�������*����������

8-32

Memory Copy

�

�

�

�

�

�

��

!

"

�

�

������
����
���
���

���
��
���
���

�

!

#�������
��� ���
$��������
��� ���
%��&�
��'�()�������*���������

8-33

Memory Copy

Destination Parameters

Copy to
Select the destination for the data. Choose one of the entries on
the list:

• Output port— Copies the data to the block output port. From
the output port the block passes data to downstream blocks
in the code.

8-34

Memory Copy

• Specified address— Copies the data to the specified location
in Specify address source and Address.

• Specified source code symbol— Tells the block to copy the
variable or symbol (variable) to the symbol you enter in Source
code symbol. When you select this copy to option, you enable
the Source code symbol parameter.

Note If you do not select the Output port option for Copy to,
you must change the Data type parameter setting from the
default Inherit from source to one of the data types on the
Data type list. If you do not make the change, you receive an
error message that the data type cannot be inherited because
the input port does not exist.

Depending on the choice you make for Copy from, you see other
parameters that let you configure the source of the data to copy.

Specify address source
This parameter directs the block to get the address for the
variable either from an entry in Address or from the input port to
the block. Select either Specify via dialog or Input port from
the list. Selecting Specify via dialog activates the Address
parameter for you to enter the address for the variable.

When you select Input port, the port label on the block changes
to &dst, indicating that the block expects the destination address
to come from the input port. Being able to change the address
dynamically lets you use the block to copy different variables by
providing the variable address from an upstream block in your
model.

Source code symbol
Specify the symbol (variable) in the source code symbol table
to copy. The symbol table for your program must include this

8-35

Memory Copy

symbol. The block does not verify that the symbol exists and
uses valid syntax.

Address
When you select Specify via dialog for the address source,
you enter the variable address here. Addresses should be in
decimal form. Enter either the decimal address or the address
as a hexadecimal string with single quotations marks and use
hex2dec to convert the address to the proper format. This
example converts Ox2000 to decimal form.

8192 = hex2dec('2000');

For this example, you could enter either 8192 or hex2dec('2000')
as the address.

Data type
Use this parameter to specify the type of data that your variable
uses. The list includes the supported data types, such as int8,
uint32, and Boolean, and the option Inherit from input port
for inheriting the data type for the variable from the block input
port.

Specify offset source
The block provides two sources for the offset—Input port and
Specify via dialog. Selecting Input port configures the block
input to read the offset value by adding an input port labeled
src ofs. This port enables your program to change the offset
dynamically during execution by providing the offset value as an
input to the block. If you select Specify via dialog, you enable
the Offset parameter in this dialog box so you can enter the offset
to use when writing the output data.

Offset
Offset tells the block whether to write the first element of the
data to be copied to the first destination address location, or skip
one or more locations at the destination before writing the output.
Offset defines how many values to skip in the destination before

8-36

Memory Copy

writing the first value to the destination. One is the default offset
value and Offset accepts only positive integers of one or greater.

Stride
Stride lets you specify the spacing for copying the input to
the destination. By default, the stride value is one, meaning
the generated code writes the input data sequentially to the
destination in consecutive locations. When you add a stride value
not equal to one, the output data is stored not sequentially, but by
skipping addresses equal to the stride. Stride must be a positive
integer.

This figure shows a stride value of three applied to writing the
input to an output location. You can specify a stride value for the
input with parameter Stride on the Source pane. As shown in
the figure, you can use both an input stride and output stride at
the same time to enable you to manipulate your memory more
fully.

8-37

Memory Copy

������
����
���
���

���
��
���
���

�

�

�

�

�

�

��

!

"

�

�

�

!

#�������
��� ���
$��������
��� ���
%��&�
��'�()�������*���������

Sample time
Sample time sets the rate at which the memory copy operation
occurs, in seconds. The default value Inf tells the block to use a
constant sample time. You can set Sample time to -1 to direct
the block to inherit the sample time from the input, if there is
one, or the Simulink model (when there are no input ports on the
block). Enter the sample time in seconds as you need.

8-38

Memory Copy

Options Parameters

Set memory value at initialization
When you check this option, you direct the block to initialize
the memory location to a specific value when you initialize your
program at run time. After you select this option, use the Set
memory value at termination and Specify initialization

8-39

Memory Copy

value source parameters to set your desired value. Alternately,
you can tell the block to get the initial value from the block input.

Specify initialization value source
After you check Set memory value at initialization, use this
parameter to select the source of the initial value. Choose either

• Specify constant value — Sets a single value to use when
your program initializes memory. Enter any value that meets
your needs.

• Specify source code symbol — Specifies a variable (a
symbol) to use for the initial value. Enter the symbol as a
string.

Initialization value (constant)
If you check Set memory value at initialization and choose
Specify constant value for Specify initialization value
source, enter the constant value to use in this field. Any real
value that meets your needs is acceptable.

Initialization value (source code symbol)
If you check Set memory value at initialization and choose
Specify source code symbol for Specify initialization value
source, enter the symbol to use in this field. Any symbol that
meets your needs and is in the symbol table for the program is
acceptable. When you enter the symbol, the block does not verify
whether the symbol is a valid one. If it is not valid you get an
error when you try to compile, link, and run your generated code.

Apply initialization value as mask
You can use the initialization value as a mask to manipulate
register contents at the bit level. Your initialization value is
treated as a string of bits for the mask.

Checking this parameter enables the Bitwise operator
parameter for you to define how to apply the mask value.

8-40

Memory Copy

To use your initialization value as a mask, the output from the
copy has to be a specific address. It cannot be an output port,
but it can be a symbol.

Bitwise operator
To use the initialization value as a mask, select one of the entries
on the following table from the Bitwise operator list to describe
how to apply the value as a mask to the memory value.

Bitwise
Operator List
Entry Description

bitwise AND Apply the mask value as a bitwise AND to
the value in the register.

bitwise OR Apply the mask value as a bitwise OR to
the value in the register.

bitwise
exclusive OR

Apply the mask value as a bitwise exclusive
OR to the value in the register.

left shift Shift the bits in the register left by
the number of bits represented by the
initialization value. For example, if your
initialization value is 3, the block shifts the
register value to the left 3 bits. In this case,
the value must be a positive integer.

right shift Shift the bits in the register to the right
by the number of bits represented by the
initialization value. For example, if your
initialization value is 6, the block shifts the
register value to the right 6 bits. In this
case, the value must be a positive integer.

Applying a mask to the copy process lets you select individual
bits in the result, for example, to read the value of the fifth bit by
applying the mask.

8-41

Memory Copy

Set memory value at termination
Along with initializing memory when the program starts to access
this memory location, this parameter directs the program to set
memory to a specific value when the program terminates.

Set memory value only at initialization/termination
This block performs operations at three periods during program
execution—initialization, real-time operations, and termination.
When you check this option, the block only does the memory
initialization and termination processes. It does not perform any
copies during real-time operations.

Insert custom code before memory write
Select this parameter to add custom C code before the program
writes to the specified memory location. When you select this
option, you enable the Custom code parameter where you enter
your C code.

Custom code
Enter the custom C code to insert into the generated code just
before the memory write operation. Code you enter in this field
appears in the generated code exactly as you enter it.

Insert custom code after memory write
Select this parameter to add custom C code immediately after
the program writes to the specified memory location. When you
select this option, you enable the Custom code parameter where
you enter your C code.

Custom code
Enter the custom C code to insert into the generated code just
after the memory write operation. Code you enter in this field
appears in the generated code exactly as you enter it.

See Also Memory Allocate

8-42

Target Preferences

Purpose Configure model for supported-processors

Library Target Preferences in Embedded IDE Link MU

Description Options on the block mask let you set features of code generation for
your custom Blackfin, NEC V850, MPC5500, or MPC7400 processor.
Adding this block to your Simulink model provides access to the
processor hardware settings you need to configure when you generate
code from Real-Time Workshop to run on the processor.

Any model that you target to custom hardware must include this block.
Real-Time Workshop returns an error message if a target preferences
block is not present in your model.

Note This block must be in your model at the top level and not in a
subsystem, unless you are generating code only from the subsystem.
It does not connect to other blocks, but stands alone to set the target
preferences for the model. Simulink returns an error when your model
either does not include a target preferences block or has more than one.

You can specify the following processor and target options on this block:

• Board and processor information

• Memory mapping and layout

• Allocation of the various code sections, such as compiler, and custom
sections

Setting the options included in this dialog box results in identifying your
target to Real-Time Workshop, MULTI, and Simulink, and configuring

8-43

Target Preferences

the memory map for your target. Both steps are essential for developing
code for any processor that is custom or explicitly supported.

Unlike most other blocks, you cannot open the block dialog box for this
block until you add the block to a model. When you try to open the
block dialog box, the block attempts to connect to a Green Hills MULTI
session. It cannot make the connection when the block is in the library.
If you try to open the block dialog box before you add it to a model, the
open process fails and returns an error message.

Note If you do not have Green Hills MULTI installed on your PC, you
cannot open this block dialog box.

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a
selected subsystem in a model. To generate code for a supported
processor from a subsystem, the subsystem model must include this
target preferences block. The rest of the model cannot contain a target
preferences block.

Dialog
Box

This reference page section contains the following subsections:

• “Board Info Pane” on page 8-46

• “Memory Pane” on page 8-48

• “Sections Pane” on page 8-54

• “New Processor Dialog Box” on page 8-58

8-44

Target Preferences

All target preferences block dialog boxes provide tabbed access to the
following panes. You set the options for the processor from these panes:

• Board info — Select the board type and processor, set the clock
speed, and identify the session.

• Memory — Set the memory allocation and layout on the processor
(memory mapping).

8-45

Target Preferences

• Sections— Determine the arrangement and location of the sections
on the processor, such as where to put the compiler information.

Board Info Pane

The following options appear on the Board Info pane for the Target
Preferences dialog box.

Board Type
Enter Custom for this option.

Processor
Select the processor from the list. The processor type you enter
determines the contents and setting for options on the Memory
and Sections panes in this dialog box. If you select NEC V850
from the list, the Memory and Sections tabs do not appear on
the dialog box. You cannot change the memory map and section
allocation for the NEC V850.

CPU clock
Shows the clock speed of the processor. When you enter a value,
you are not changing the CPU clock rate. Instead, you are
reporting the actual rate. If the value you enter does not match
the rate on the processor, your model’s real-time results code
profiling results may be incorrect.

Enter the actual clock rate the board uses. The rate you enter in
this field does not change the rate on the board. Setting CPU
clock to the actual board rate allows the code you generate to run
correctly according to the actual clock rate of the hardware.

When you generate code for targets from Simulink models,
you may encounter the software timer. The timer is invoked
automatically to handle and create interrupts to drive your
model if the processing rates in your model change (the model
is multirate).

Correctly generating interrupts for your model depends on the
clock rate of the CPU on your processor.

8-46

Target Preferences

For the timer software to calculate the interrupts correctly,
MULTI needs to know the actual clock rate of your processor as
you configured it. CPU clock speed lets you tell the timer the
rate at which your processor CPU runs, which is the rate to use
to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock to
calculate the time for each interrupt. For example, if your model
includes a sine wave generator block running at 1 kHz feeding a
signal into an FIR filter block, the timer needs to create interrupts
to generate the sine wave samples at the proper rate. The timer
uses the clock rage you enter, for example, 100 MHz, to calculate
the sine generator interrupt period as follows for the sine block:

• Sine block rate = 1 kHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires:

100,000,000/1000 = 1 Sine block interrupt per 100,000 clock ticks

Thus, you must report the correct clock rate, or the interrupts
come at the wrong times and the results are incorrect.

Board Custom Code
Entries in this group let you specify the locations of custom source
files or libraries or other functions. Five options provide access to
text areas where you enter files and file paths:

• Source files— Enter the full paths to source code files to use
with this processor. By default, there are no entries in this
parameter.

• Include paths— If you require additional files on your path,
add them by typing the path into the text area. The default
setting does not include additional paths.

• Libraries — These entries identify specific libraries that
the processor requires. They appear on the list by default if

8-47

Target Preferences

required. Add more as you require by entering the full path to
the library with the library file in the text area. No additional
libraries appear in this field in the default configuration.

• Initialize functions— If your project requires an initialize
function, enter it in this field. By default, this parameter is
empty.

• Terminate functions — Enter a function to run when a
program terminates. The default setting is not to include a
specific termination function.

When you enter a path to a file, library, or other custom code,
use the string

$(install_dir)

to refer to the MULTI installation directory.

Enter new paths or files (custom code items) one entry per line.
Include the full path to the file for libraries and source code.
Board custom code options do not support functions that use
return arguments or values. Only functions of type void fname
void are valid as entries in these parameters.

Memory Pane

When you develop models for any processor, you need to specify the
layout of the physical memory on your processor and board to determine
how use it for your program. For supported boards, the board-specific
target preferences blocks set the default memory map. This pane does
not apply to NEC V850 processors or Freescale MPC7400 processors..

8-48

Target Preferences

The Memory pane contains memory options in three areas:

• Physical Memory— Specify the processor and board memory map

• Heap — Specify whether you use a heap and determine the size
in words

8-49

Target Preferences

• Cache configuration — Enables the cache (where available) and
sets the size in kilobytes

Note Your Physical Memory, Heap, and Cache configuration
settings on this pane may affect options on the Sections pane. Your
choices on the Memory pane may change how you configure some
options on the Sections pane.

Most of the information about memory segments and memory allocation
is available from the online help system for MULTI.

Physical Memory Options

This list shows the physical memory segments available on the board
and processor. By default, target preferences blocks show the memory
segments found on the selected processor. In addition, the Memory
pane on preconfigured target preferences blocks shows memory
segments that are available on the board, but that are external to the
processor (external memory). Target preferences blocks set default
starting addresses, lengths, and contents of the default memory
segments.

The default memory segments for each processor and board are
different. For example:

• Custom boards based on Blackfin processors provide
L1_Scratch_SRAM memory segments by default.

• MPC5500 boards provide sram_stdby memory segments by default.

Name
When you highlight an entry on the Physical memory list, the
name of the entry appears in this field. To change the name of the
existing memory segment, select it in the Physical memory list
and then type the new name in this field.

8-50

Target Preferences

Note You cannot change the names of default processor memory
segments.

To add a new physical memory segment to the list, click Add,
replace the temporary label in Name with the one to use, and
press Return. Your new segment appears on the list.

After you add the segment, you can configure the starting address,
length, and contents for the new segment. New segments start
with code and data as the type of content that can be stored in the
segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as
newsegment or newSegment.

Address
Address reports the starting address for the memory segment
showing in the Name field. Address entries are in hexadecimal
format and limited only by the board or processor memory.

When you are using a processor-specific preferences block, the
starting address shown is the default value. You can change the
starting value by entering the new value directly in the Address
field when you select the memory segment to change.

Length
From the starting address, Length sets the length of the memory
allocated to the segment in the Name field. As in all memory
entries, specify the length in hexadecimal format, in minimum
addressable data units (MADUs).

When you are using a processor-specific preferences block, the
length shown is the default value. You can change the value by
entering the new value directly in this option.

8-51

Target Preferences

Contents
Contents details the kind of program sections that you can store
in the memory segment in Name. As the processor type for the
target preferences block changes, the kinds of information you
store in listed memory segments may change. Generally, the
Contents list contains these strings:

• Code — Allow code to be stored in the memory segment in
Name.

• Data — Allow data to be stored in the memory segment in
Name.

• Code and Data — Allow code and data to be stored in the
memory segment in the Name field. When you add a new
memory segment, this string is the default setting for the
contents of the new element.

You may add or use as many segments of each type as you need,
within the limits of the memory on your processor.

Add
Click Add to add a new memory segment to the processor memory
map. When you click Add, a new segment name appears, for
example NEWMEM1, in Name and on the Physical memory list. In
Name, change the temporary name NEWMEM1 by entering the new
segment name. Entering the new name or clicking Apply updates
the temporary name on the list to the name you enter in this field.

Remove
Remove a memory segment from the memory map. Select the
segment to remove on the Physical memory list, and click
Remove to delete the segment.

Memory bank list
Displays all available memory banks for the selected processor.
When you select one of the entries on this list, the Name,
Address, Length, and Contents parameters change to reflect
the memory block selection. With the contents list, you can change
the type of material stored in the block—data or code or both.

8-52

Target Preferences

Create Heap (where applicable)
If your processor supports using a heap, as the Blackfin processors
do, selecting this option enables creating the heap, and enables
the Heap size option. Create heap is not available on processors
that either do not provide a heap or do not allow you to configure
the heap.

Use this option to create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list,
and then select Create heap to create a heap in the selected
segment. After you create the heap, use the Heap size and
Define label options to configure the heap.

The location of the heap in the memory segment is not under
your control. The only way to control the location of the heap in
a segment is to make the segment and the heap the same size.
Otherwise, the compiler determines the location of the heap in
the segment.

Heap Size (where applicable)
After you select Create heap, this option lets you specify the
size of the heap in words. Enter the number of words in decimal
format. When you enter the heap size in decimal words, the
system converts the decimal value to hexadecimal format. You
can enter the value directly in hexadecimal format as well.
Processors may support different maximum heap sizes.

Define Label (where applicable)
Selecting Create heap enables this option that allows you to
name the heap. Enter your label for the heap in the Heap label
option.

Heap Label (where applicable)
Use this option which you enable by selecting Define label, to
provide the label for the heap. Any combination of characters
is accepted for the label, except reserved characters in C/C++
compilers.

8-53

Target Preferences

Cache level
Blackfin processors support different cache arrangements. For
Blackfin processors, you can select one of the following options
from the list:

• L1_Code_CACHE

• L1_DataA_CACHE

• L1_DataB_CACHE

Freescale processors do not support cache storage.

Configuration (where applicable)
Select the size of the cache from the list to determine the size of
the cache allocated. Blackfin processors support 0 bits or 16 bits.

Sections Pane

Options on this pane let you specify where various program sections
should go in memory. Program sections are distinct from memory
segments—sections are portions of the executable code stored in
contiguous memory locations. Commonly used sections include
.program, .bsz, .data1, and .stack. This pane does not apply for NEC
V850 or Freescale MPC7400 processors.

As you change the processor you select on the Board Info pane, the
options and list entries on this pane change.

For more information about program sections and objects, refer to the
Green Hills MULTI online help.

The following figure shows the Memory pane as it appears for the
Blackfin processors.

8-54

Target Preferences

Within this pane, you allocate the memory needed for the Default
sections and Custom sections.

You can learn more about memory sections and objects in your Green
Hills Software MULTI online help.

Default sections
During program compilation, the compiler produces both
uninitialized and initialized blocks of data and code. These blocks

8-55

Target Preferences

get allocated into memory as required by the configuration of your
system. On the Default sections list you find both initialized
sections that contain data or executable code and uninitialized
sections that reserve space in memory.

For Blackfin processors, the initialized sections are:

• bsz

• bsz_init

• constdata

• seg_pmco

• seg_pmda

• voldata (created by the assembler)

These sections are uninitialized:

• (created by the assembler)

• heap

• stack

• text

Other sections may appear on the list as well, such as:

• data (created by the assembler)

• userstack

• sdabase

Note The C/C++ compiler does not use the .data section.

8-56

Target Preferences

When you highlight a section on the list, Section description
shows a brief description of the section. Also, Placement shows
you where the section is presently allocated in memory.

Section description
Describes the contents of the selected entry on the Default
sections list.

Placement
Shows you where the selected Default sections list entry is
allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains the memory segments as defined in the physical memory
map on the Memory pane. Select one of the listed memory
segments to allocate the highlighted compiler section to the
segment.

Custom sections
When your program uses code or data sections that are not
included in the Default sections list, you add the new sections
to this list. Initially, the Custom sections list contains no fixed
entries, but instead, only a placeholder for a section for you to
define.

Name
Enter the name for your new section in this field. To add a new
section, click Add. Then, replace the temporary name with the
name to use. Although the temporary name includes a period at
the beginning you do not need to include the period in your new
name. Names are case sensitive. NewSection is not the same
as newsection, or newSection.

Placement
After you have added the new section to the Name list, select the
memory segment to which to add your new section. Limited only
by the restrictions imposed by the hardware and compiler, you
can select any segment that appears on the list.

8-57

Target Preferences

Add
Click Add to add a new entry on the list of custom sections. When
you click Add, a new temporary name, for example NEWMEM1
appears in the Name field. Enter the new custom section name to
add the section to the Custom sections list. After you enter the
new name, click Apply to add the new section to the list. You can
also click OK to add the section to the list and close the dialog box.

Remove
Remove a section from the Custom sections list. To remove a
section, select the section, and click Remove.

New Processor Dialog Box

Clicking Add new on the General paneopens this dialog box to add a
new processor to the list of supported processors.

The first time you click Save to add a new processor definition to
the list of supported processors, a dialog box opens that directs you
to select a destination folder for the saved processor definitions file
customChipInfo.dat. You must select a directory to which you have
write access. The location you specify becomes part of your MATLAB
preferences. Future processors that you add become entries in the file
customChipInfo.dat.

To add a new processor, you must enter values for the following
parameters:

Name
Provide a name to identify your new processor. You can use any
valid ANSI C string value in this field. The name you enter in
this field appears on the list of processors after you add the new
processor.

Processor Class
Identifies the class of the new processor. Your new processor must
be a member of a family of processors that Embedded IDE Link
MU software supports. For example, you can add a new Blackfin
processor because the product supports the Blackfin processor
family.

8-58

Target Preferences

CPU clock
Provide a name to identify your new processor. You can use any
valid ANSI C string value in this field. The name you enter in
this field appears on the list of processors after you add the new
processor.

Enter the clock speed of the processor in MHz. When you enter
a value, you are not setting the CPU clock rate on the processor.
You are reporting the rate. If the value you enter does not match
the rate on the processor, your model’s real-time results may be
wrong, and code profiling results are not correct.

Setting CPU clock to the actual board rate allows the generated
code to run correctly according to the actual clock rate of the
hardware.

Compiler switch
This string ensures that the compile operation works successfully.

Code generation hook
This string provides the prefix that the calling code uses to call
hook functions during code generation.

Define internal memory banks (one or more memory banks)
Parameters in this group configure the memory map for the new
processor.

Define default sections (one or more default sections)
Parameters in this group configure the default sections for your
new processor.

If you do not provide an entry for each of these parameters, Embedded
IDE Link MU software returns an error message and does not create
the new processor entry.

8-59

Target Preferences

General
Name

Provide a name to identify your new processor. You can use any
valid C string in this field. The name you enter appears on the list
of processors after you add the new processor.

8-60

Target Preferences

CPU clock
Enter the clock speed of the processor in MHz. When you enter
a value, you are not setting the CPU clock rate on the processor.
You are reporting the rate. If the value you enter does not match
the rate on the processor, your model’s real-time results and code
profiling results may not be correct.

Setting CPU clock to the actual board rate allows the code you
generate to run correctly according to the actual clock rate of the
hardware.

Processor class
This represents the class for the new processor. New processors
must be members of processor families that Embedded IDE Link
MU software supports, such as a new Blackfin processor or a new
Freescale MPC processor.

You cannot add a new processor class to support your new
processor.

Generally, processors in a family share common design elements
such as interrupt architecture and clock. They may have different
memory maps. By selecting the processor class, you identify the
common features of the processor family. The parameters in
Define internal memory banks and Define default sections
enable you to specify the memory mapping for your new processor.

For example, to add a new Blackfin processor, enter the string
multilink_blackfin. The following table shows the processor
class string for supported processor families.

Processor Family Class String

Freescale MPC55xx mpc5500

Freescale MPC74xx mpc7400

8-61

Target Preferences

Processor Family Class String

NEC V850 v850

Analog Devices™ BF53x multilink_blackfin

Compiler switch
Identifies the processor family of the new processor to the
compiler. Successful compilation requires this switch. The string
depends on the processor family or class. For example, to set
the compiler switch for a new Blackfin BF531 processor, enter
—-bsp =generic -cpu=bf531. The following table shows the
compiler switch string for supported processor families.

Processor Family Compiler Switch String

Freescale MPC55xx -cpu=ppc55xx where xx is
the numerical designation for
the processor. For example,
the MPC5553 uses the string
-cpu=ppc5553

Freescale MPC74xx -bsp generic

NEC V850 -bsp =generic -cpu=v850

Analog Devices BF53x -bsp =generic -cpu=bf53x
where x is the numerical
designation for the
processor, such as
-bsp =generic -cpu=bf532
for the BF532.

Code generation hook
This string specifies a prefix to add when the code generation
process calls certain hook functions. The hook allows the code
to call into handling functions that are specific to the selected
processor. The following table shows the Code Generation hook
string for supported processor families.

8-62

Target Preferences

Processor Family Code Generation Hook
String

Freescale MPC55xx mpc5500

Freescale MPC74xx mpc7400

NEC V850 v850

Analog Devices BF53x multilink_blackfin

Here is an example of using the code generation hook when you
begin to generate a project from a model intended for the BF53x
processor. At the start of the code generation process, the process
calls multilink_blackfin_validateModelEntry.m to validate
the model settings for the processor. The multilink_blackfin
prefix is the code generation hook.

Define internal memory banks
Name

To add a new physical memory segment to the internal memory
banks list, click Add, replace the temporary label in Name with
the one to use, and press Return. Your new segment appears
on the list.

After you add the segment, you can configure the starting address,
length, and contents for the new segment. New segments start
with code and data as the type of content that can be stored in the
segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as
newsegment or newSegment.

Address
Address reports the starting address in hexadecimal format for
the memory segment showing in Name. Address entries are
limited only by the board or processor memory.

When you are using a processor-specific preferences block, the
starting address shown is the default value. You can change the

8-63

Target Preferences

starting value by entering the new value directly in Address
when you select the memory segment to change.

Length
From the starting address, Length sets the length of the
memory allocated to the segment in Name. As in all memory
entries, specify the length in hexadecimal format, in minimum
addressable data units (MADUs). For the Green Hills Software
processor families, for example, the MADU is 8 bytes, 1 word.

Contents
Contents specifies the kind of program sections that you can
store in the memory segment in Name. When you change the
processor type, the kinds of information you can store in listed
memory segments may change. Generally, the Contents list
contains these strings:

• Code — Allow code to be stored in the memory segment in
Name.

• Data — Allow data to be stored in the memory segment in
Name.

• Code and Data — Allow code and data to be stored in the
memory segment in Name. When you add a new memory
segment, this setting is the default for the contents of the new
element.

You may add or use as many segments of each type as you need,
within the limits of the memory on your processor.

Add
Click Add to add a new memory segment to the processor memory
map. When you click Add, a new segment name appears, for
example NEWMEM1, in Name and on the list. In Name, change the
temporary name NEWMEM1 by entering the new segment name.
Entering the new name, or clicking OK updates the temporary
name on the list to the name you enter.

8-64

Target Preferences

Remove
Remove a memory segment from the memory map. Select the
segment to remove from the list, and click Remove to delete the
segment.

Define cache configuration
Label

Enter your label for the cache in the Label field. Entering the
label updates the label of the selected configuration.

Start
Enter the starting address for the new cache configuration. The
address should be a hexadecimal value starting with 0x.

Growth
Select whether the cache grows in the Positive direction or in
the Negative direction from the starting address.

Options
Enter the label for each option of the selected cache configuration,
one label on each line, such as 0kb, 16kb, 32kb and so on.

Add
Click Add to add a new cache configuration to the list. When you
click Add, the new cache label appears on the list.

Remove
Remove a cache configuration from the cache list. Select the
configuration to remove from the list, and click Remove to delete
the cache.

Cache configurations and related options are defined as symbols
to the project generator component. Cache options for new
processors are not labeled until you add the labels.

Define Default Sections
Options in this region let you specify where various program sections
go in memory and the contents and label for each section. You can
add text to describe each section. Program sections are distinct from
memory segments—sections are portions of the executable code stored

8-65

Target Preferences

in contiguous memory locations. Commonly used sections include .text,
.bss, .data, and .stack. Some sections relate to the compiler, and some
can be custom sections as you require.

Label
The name of the section corresponds to the symbolic name
recognized by the linker program used with the respective
processor.

Description
Enter text that describes the default section to add.

Contents
Contents provides the information about the native of the
program section. As the processor type for the target preferences
block changes, the kinds of information you store in listed sections
may change. Generally, the Contents list contains these strings:

• Code— Allow code to be stored in the section in Label.

• Data— Allow data to be stored in the section in Label.

You may add or use as many sections of each type as you need,
within the limits of the memory on your processor.

Placement
Select the default placement for the new section from the list of
available sections.

Add
Click Add to add a new section to the list. Clicking Add enables
the parameters that define the new section.

Remove
This option lets you remove a section from the section list. Select
the section to remove from the list, and click Remove to delete
the section.

8-66

Target Preferences

Sections and related options are defined as symbols to the project
generator component. Section options for new processors are not
labeled until you add the labels.

Processor Custom Code
The list on the left side of the pane shows the kinds of custom code
you can specify for your processor. Each time you use your custom
processor as defined in this dialog box, the custom code you enter in
this field applies. You can enter custom code in the categories in the
following table.

Custom Code Entry Description

Source files Enter the full paths to source code files to use
with this processor. By default there are no
entries in this parameter. Enter each source
file on a new line.

Include paths If you require additional header files on
your path, add them by typing the path into
the text area, one file per line. The default
setting does not include additional paths.

Libraries (Little
Endian)

These entries identify specific little endian
libraries that the processor requires. Add
more as you require by entering the full path
to the library with the library file in the
text area. Enter one library per line. No
additional libraries appear in the default
configuration.

8-67

Target Preferences

Custom Code Entry Description

Libraries (Big
Endian)

These entries identify specific big endian
libraries that the processor requires. Add
more as you require by entering the full path
to the library with the library file in the text
area. No additional libraries appear in the
default configuration. Enter one library per
line.

Preprocessor
symbols

Enter any preprocessor symbols that the
new processor requires for operation and
compilation. No preprocessor symbols appear
in the default configuration. Add the required
symbols one symbol per line.

You can use two types of tokens when you specify custom code paths:

• $(Install_dir)— Refers to the installation directory of Green Hills
MULTI. One example of this token is the following string:

$(Install_dir) \multi\csl\lib\...

• $(MATLAB_ROOT) — Refers to the directory where you installed
MATLAB.

8-68

9

Embedded IDE Link MU
Software Configuration
Parameters

9 Embedded IDE Link™ MU Software Configuration Parameters

Embedded IDE Link MU Pane

In this section...

“Embedded IDE Link MU Overview” on page 9-4
“Export MULTI link handle to base workspace” on page 9-5
“MULTI link handle name” on page 9-7
“Profile real-time execution” on page 9-9
“Profile by” on page 9-11
“Number of profiling samples to collect” on page 9-12

9-2

Embedded IDE Link MU Pane

In this section...

“Inline run-time library functions” on page 9-14
“Compiler options string” on page 9-16
“System stack size (MAUs)” on page 9-18
“System heap size (MAUs)” on page 9-19
“Build action” on page 9-20
“Interrupt overrun notification method” on page 9-22
“Interrupt overrun notification function” on page 9-24
“PIL block action” on page 9-25
“Maximum time allowed to build project (s)” on page 9-27
“Maximum time to complete MULTI operations (s)” on page 9-29
“Source file replacement” on page 9-31

9-3

9 Embedded IDE Link™ MU Software Configuration Parameters

Embedded IDE Link MU Overview
Options on this pane configure the generated projects and code for processors
that Green Hills MULTI supports. They also enable PIL block generation and
provide real-time task execution profiling.

9-4

Embedded IDE Link MU Pane

Export MULTI link handle to base workspace
Directs the software to export the ghsmulti object to your MATLAB
workspace.

Settings
Default: On

On
Directs the build process to export the ghsmulti object created to your
MATLAB workspace. The new object appears in the workspace browser.
Selecting this option enables theMULTI link handle name option.

Off
prevents the build process from exporting the ghsmulti object to your
MATLAB software workspace.

Dependency
This parameter enables MULTI link handle name.

Command-Line Information

Parameter: exportIDEObj
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution No impact

9-5

9 Embedded IDE Link™ MU Software Configuration Parameters

See Also
For more information, refer to “Setting Embedded IDE Link MU Code
Generation Options” on page 3-16.

9-6

Embedded IDE Link MU Pane

MULTI link handle name
specifies the name of the ghsmulti object that the build process creates.

Settings
Default: IDE_Obj

• Enter any valid C variable name, without spaces.

• The name you use here appears in the MATLAB workspace browser to
identify the ghsmulti object.

• The handle name is case sensitive.

Dependency
This parameter is enabled by Export MULTI link handle to base
workspace.

Command-Line Information

Parameter: ideObjName
Type: string
Value:
Default: IDE_Obj

Recommended Settings

Application Setting

Debugging Enter any valid C program variable name,
without spaces

Traceability No impact
Efficiency No impact
Safety precaution No impact

9-7

9 Embedded IDE Link™ MU Software Configuration Parameters

See Also
For more information, refer to “Setting Embedded IDE Link MU Code
Generation Options” on page 3-16.

9-8

Embedded IDE Link MU Pane

Profile real-time execution
Enables real-time execution profiling in the generated code by adding
instrumentation for task functions or atomic subsystems.

Settings
Default: Off

On
Adds instrumentation to the generated code to support task execution
profiling and generate the profiling report.

Off
Does not instrument the generated code to produce the profile report.

Dependencies
This parameter adds Number of profiling samples to collect.

Selecting this parameter disables Export ID link handle to base
workspace.

Setting Build action to Archive_library or
Create_processor_in_the_loop project removes this parameter.

Command-Line Information

Parameter: ProfileGenCode
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On

9-9

9 Embedded IDE Link™ MU Software Configuration Parameters

Application Setting

Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to “Setting Embedded IDE Link MU Code
Generation Options” on page 3-16.

9-10

Embedded IDE Link MU Pane

Profile by
Defines how to profile the executing program.

Settings
Default: Task

Task
Profiles model execution by the tasks defined in the model and program.

Atomic subsystem
Profiles model execution by the atomic subsystems in the model.

Dependencies
Selecting Real-time execution profiling enables this parameter.

Command-Line Information

Parameter: profileBy
Type: string
Value: Task | Atomic subsystem
Default: Task

Recommended Settings

Application Setting

Debugging Task or Atomic subsystem

Traceability Archive_library

Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to “Embedded IDE Link MU Pane” on page 9-2

For more information about PIL, refer to “Using Processor-in-the-Loop” on
page 4-3.

9-11

9 Embedded IDE Link™ MU Software Configuration Parameters

Number of profiling samples to collect
Specifies the number of profiling samples to collect. Collection stops when
the buffer for profiling data is full.

Settings
Default: 100

Minimum: 1

Maximum: Buffer capacity in samples

Tips

• Collecting profiling data on a simulator may take a very long time.

• Data collection stops after collecting the specified number of samples. The
application and processor continue to run.

Dependencies
This parameter is enabled by Profile real-time task execution.

Command-Line Information

Parameter:ProfileNumSamples
Type: int
Value: <enter value here> | <enter value here> | <enter value
here>
Default: 100

Recommended Settings

Application Setting

Debugging 100
Traceability No impact

9-12

Embedded IDE Link MU Pane

Application Setting

Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to “Setting Embedded IDE Link MU Code
Generation Options” on page 3-16.

9-13

9 Embedded IDE Link™ MU Software Configuration Parameters

Inline run-time library functions
Marks run-time library functions generated by the Signal Processing
Toolbox™ and Video and Image Processing Blockset block algorithms. These
functions as marked with the inline keyword.

Settings
Default: On

On
Adds the keyword inline to each instance of an algorithm generated
from blocks in the Signal Processing Blockset software and Video and
Image Processing Blockset software.

Off
Does not mark the algorithms with the keyword.

Tips
The following list shows cases where inlining run-time library functions may
not be appropriate:

• Few or no numerical parameters in the function

• One algorithm that is already fixed in capability, such as it has no optional
modes or alternate algorithms

• Function supports only one data type

• Significant or large code size in the mdlOutputs() function

• Your models use multiple instances of this library function

Command-Line Information

Parameter: InlineDSPBlks
Type: string
Value: 'on' | 'off'
Default: on

9-14

Embedded IDE Link MU Pane

Recommended Settings

Application Setting

Debugging Off
Traceability On
Efficiency On
Safety precaution No impact

See Also
For more information, refer to “Setting Embedded IDE Link MU Code
Generation Options” on page 3-16.

9-15

9 Embedded IDE Link™ MU Software Configuration Parameters

Compiler options string
Lets you enter a string of compiler options to define your project configuration.

Settings
Default: No default

Tips

• Use spaces between options.

• Verify that the options are valid. The software does not validate the option
string.

Command-Line Information

Parameter: compilerOptionsStr
Type: string
Value:
Default: No default value

Recommended Settings

Application Setting

Debugging None
Traceability None
Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to “Setting Embedded IDE Link MU Code
Generation Options” on page 3-16.

9-16

9 Embedded IDE Link™ MU Software Configuration Parameters

9-17

9 Embedded IDE Link™ MU Software Configuration Parameters

System stack size (MAUs)
Allocates memory for the system stack on the processor.

Settings
Default: 512

Minimum: 0

Maximum: Available memory

• Enter the stack size in minimum addressable units (MAUs).

• The software does not verify that your size is valid. Be sure that you enter
an acceptable value.

Dependencies
Setting Build action to Archive_library removes this parameter.

Command-Line Information

Parameter: systemStackSize
Type: int
Default: 512

Recommended Settings

Application Setting

Debugging int

Traceability int

Efficiency int

Safety precaution No impact

See Also
For more information, refer to “Setting Embedded IDE Link MU Code
Generation Options” on page 3-16.

9-18

Embedded IDE Link MU Pane

System heap size (MAUs)
Allocates memory for the system heap on the processor.

Settings
Default: 512

Minimum: 0

Maximum: Available memory

• Enter the heap size in minimum addressable units (MAUs).

• The software does not verify that your size is valid. Be sure that you enter
an acceptable value.

Dependencies
Setting Build action to Archive_library removes this parameter.

Command-Line Information

Parameter: systemHeapSize
Type: int
Default: 512

Recommended Settings

Application Setting

Debugging int

Traceability int

Efficiency int

Safety precaution No impact

See Also
For more information, refer to “Setting Embedded IDE Link MU Code
Generation Options” on page 3-16.

9-19

9 Embedded IDE Link™ MU Software Configuration Parameters

Build action
Defines how Real-Time Workshop software responds when you press Ctrl+B
to build your model.

Settings
Default: Build_and_execute

Build_and_execute
Builds your model, generates code from the model, and then compiles
and links the code. After linking, this setting downloads and runs the
executable on the processor.

Create_project
Directs Real-Time Workshop software to create a new project in the IDE.

Archive_library
Invokes the MULTI Archiver to build and compile your project, but It
does not run the linker to create an executable project. Instead, the
result is a library project.

Build
Builds a project from your model. Compiles and links the code. Does not
download and run the executable on the processor.

Create_processor_in_the_loop_project
Directs the Real-Time Workshop code generation process to create PIL
algorithm object code as part of the project build.

Dependencies
Selecting Archive_library removes the following parameters:

• Interrupt overrun notification method

• Interrupt overrun notification function

• Profile real-time task execution

• Number of profiling samples to collect

• System stack size (MAUs)

• System heap size (MAUs)

9-20

Embedded IDE Link MU Pane

• Export MULTI link handle to base workspace

Selecting Create_processor_in_the_loop_project removes the following
parameters:

• Interrupt overrun notification method

• Interrupt overrun notification function

• Profile real-time task execution

• Number of profiling samples to collect

• Export MULTI link handle to base workspace with the option set
to export the handle

Command-Line Information

Parameter: buildAction
Type: string
Value: Build | Build_and_execute | Create_project Archive_library
| Create_processor_in_the_loop_project
Default: Build_and_execute

Recommended Settings

Application Setting

Debugging Build_and_execute

Traceability Archive_library

Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to “Setting Embedded IDE Link MU Code
Generation Options” on page 3-16.

For more information about PIL, refer to “Using Processor-in-the-Loop” on
page 4-3.

9-21

9 Embedded IDE Link™ MU Software Configuration Parameters

Interrupt overrun notification method
Specifies how your program responds to overrun conditions during execution.

Settings
Default: None

None
Your program does not notify you when it encounters an overrun
condition.

Print_message
Your program prints a message to standard output when it encounters
an overrun condition.

Call_custom_function
When your program encounters an overrun condition, it executes a
function that you specify in Interrupt overrun notification function.

Tips

• The definition of the standard output depends on your configuration.

• The custom function must exist in the current working directory.

Dependencies
Selecting Call_custom_function enables the Interrupt overrun
notification function parameter.

Setting this parameter to Call_custom_function enables the Interrupt
overrun notification function parameter.

Command-Line Information

Parameter: overrunNotificationMethod
Type: string
Value: None | Print_message | Call_custom_function
Default: None

9-22

Embedded IDE Link MU Pane

Recommended Settings

Application Setting

Debugging Print_message or Call_custom_function

Traceability Print_message

Efficiency None

Safety precaution No impact

See Also
For more information, refer to “Setting Embedded IDE Link MU Code
Generation Options” on page 3-16.

9-23

9 Embedded IDE Link™ MU Software Configuration Parameters

Interrupt overrun notification function
Specifies the name of a custom function your code runs when it encounters an
overrun condition during execution.

Settings
No Default

Tips
Specify a function that exists in your current working directory.

Dependencies
This parameter is enabled by setting Interrupt overrun notification
method to Call_custom_function.

Command-Line Information

Parameter: overrunNotificationFcn
Type: string
Value: no default
Default: no default

Recommended Settings

Application Setting

Debugging String
Traceability String
Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to “Setting Embedded IDE Link MU Code
Generation Options” on page 3-16.

9-24

Embedded IDE Link MU Pane

PIL block action
Specifies whether Real-Time Workshop software builds the PIL block and
downloads the block to the processor

Settings
Default: Create_PIL_block_and_download

Create_PIL_block_build_and_download
Builds and downloads the PIL application to the processor after creating
the PIL block. Adds PIL interface code that exchanges data with
Simulink.

Create_PIL_block
Creates a PIL block, places the block in a new model, and then stops
without building or downloading the block. The resulting project will
not compile in the IDE.

None
Configures model to generate a MULTI project that contains the PIL
algorithm code. Does not build the PIL object code or block. The new
project will not compile in the IDE.

Tips

• When you click Build on the PIL dialog box, the build process adds the PIL
interface code to the project and compiles the project in the IDE.

• If you select Create PIL block, you can build manually from the block
right-click context menu

• After you select Create PIL Block, copy the PIL block into your model to
replace the original subsystem. Save the original subsystem in a different
model so you can restore it in the future. Click Build to build your model
with the PIL block in place.

• Add the PIL block to your model to use cosimulation to compare PIL
results with the original subsystem results. Refer to the demo “Comparing
Simulation and Target Implementation with Processor-in-the-Loop (PIL)”
in the product demos Embedded IDE Link MU

9-25

9 Embedded IDE Link™ MU Software Configuration Parameters

• When you select None or Create_PIL_block, the generated project will
not compile in the IDE. To use the PIL block in this project, click Build
followed by Download in the PIL block dialog box.

Dependency
Enable this parameter by setting Build action to
Create_processor_in_the_loop_project.

Command-Line Information

Parameter: configPILBlockAction
Type: string
Value: None | Create_PIL_block |
Create_PIL_block_build_and_download
Default: Create_PIL_block

Recommended Settings

Application Setting

Debugging Create_PIL_block_build_and_download

Traceability Create_PIL_block_build_and_download

Efficiency None

Safety precaution No impact

See Also
For more information, refer to “Using Processor-in-the-Loop” on page 4-3.

9-26

Embedded IDE Link MU Pane

Maximum time allowed to build project (s)
Specifies how long, in seconds, the software waits for the project build process
to return a completion message.

Settings
Default: 1000

Minimum: 1

Maximum: No limit

Tips

• The build process continues even if MATLAB does not receive the
completion message in the allotted time.

• This time-out value does not depend on the global time-out value in a
ghsmulti object or the Maximum time to complete IDE operations
time-out value.

Dependency
This parameter is disabled when you set Build action to Create_project.

Command-Line Information

Parameter:ideObjBuildTimeout
Type: int
Value: Integer greater than 0
Default: 100

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

9-27

9 Embedded IDE Link™ MU Software Configuration Parameters

Application Setting

Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to “Setting Embedded IDE Link MU Code
Generation Options” on page 3-16.

9-28

Embedded IDE Link MU Pane

Maximum time to complete MULTI operations (s)
Specifies how long the software waits for IDE functions, such as read or
write, to return completion messages.

Settings
Default: 10

Minimum: 1

Maximum: No limit

Tips

• The IDE operation continues even if MATLAB does not receive the
message in the allotted time. Click Chapter 6, “Functions — Alphabetical
List” to see a list of the functions and methods.

• This time-out value does not depend on the global time-out value in a
ghsmulti object or the Maximum time allowed to build project (s)
time-out value

Command-Line Information

Parameter:ideObjTimeout
Type: int
Value:
Default: 10

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

9-29

9 Embedded IDE Link™ MU Software Configuration Parameters

See Also
For more information, refer to “Setting Embedded IDE Link MU Code
Generation Options” on page 3-16.

9-30

Embedded IDE Link MU Pane

Source file replacement
Selects the diagnostic action to take if Embedded IDE Link MUsoftware
detects conflicts when you replace source code with custom code.

Settings
Default: warn

none
Does not generate warnings or errors when it finds conflicts.

warning
Displays a warning.

error
Terminates the build process and displays an error message that
identifies which file has the problem and suggests how to resolve it.

Tips

• The build operation continues if you select warning and the software
detects custom code replacement problems. You see warning messages as
the build progresses.

• Use the error setting the first time you build your project after you specify
custom code to use. The error messages can help you diagnose problems
with your custom code replacement files.

• Use none when you are sure the replacement process is correct and do not
want to see multiple messages during your build.

Command-Line Information

Parameter: DiagnosticActions
Type: string
Value: none | warning | error
Default: warning

9-31

9 Embedded IDE Link™ MU Software Configuration Parameters

Recommended Settings

Application Setting

Debugging error

Traceability error

Efficiency warning

Safety precaution error

See Also
For more information, refer to “Embedded IDE Link MU Pane Options” on
page 3-28.

For more information about custom code replacement, refer to “Configuring
Custom Code” in the Real-Time Workshop User’s Guide.

9-32

A

Examples

Use this list to find examples in the documentation.

A Examples

Automation Interface
“Getting Started with Automation Interface” on page 2-2

Working with Links
“Example — Constructor for ghsmulti Objects” on page 2-21
“Example — Setting Link Property Values at Construction” on page 2-24
“Example — Setting Link Property Values Using set” on page 2-25
“Example — Retrieving Link Property Values Using get” on page 2-25
“Example — Direct Property Referencing in Links” on page 2-25

Project Generator
“Project Generator Tutorial” on page 3-10

Asynchronous Scheduler
“Configuring Models for Asynchronous Scheduling” on page 3-35
“Idle Task” on page 3-37
“Hardware Interrupt Triggered Task” on page 3-38

Mutlitasking Scheduler
“Multitasking Scheduler Examples” on page 3-47

Verification
“PIL Block” on page 4-6
“Profiling Execution by Tasks” on page 4-13

A-2

Verification

“Profiling Execution By Subsystems” on page 4-15

A-3

A Examples

A-4

Index

IndexA
access properties 2-23
Archive_library 3-70
asynchronous scheduling 3-35

B
block limitations using model reference 3-71

C
compiler options string, set compiler options 3-32
configuration parameters

pane 9-4
Compiler options string: 9-16
DiagnosticActions 9-31
Export MULTI link handle to base

workspace: 9-5
gui item name 9-12 9-27 9-29
Inline run-time library functions 9-14
Interrupt overrun notification

function: 9-24
MULTI link handle name: 9-7
Profile real-time execution 9-9
profileBy 9-11
System stack size (MAUs): 9-18 to 9-19
Tag_ConfigSet_Target_buildAction 9-20
Tag_ConfigSet_Target_configPILBlockAction 9-25
Tag_ConfigSet_Target_overrunNotificationMethod 9-22

configure the software timer 8-46
connect to simulator 6-20
CPU clock speed 8-46
create custom target function library 3-67
Create_project option 3-29
current CPU clock speed 8-46

D
debug operation

new 6-40

discrete solver 3-19

E
Embedded IDE Link™ MU

use multilinklib blocks 3-3
Embedded IDE Link™ MU build options

Create_project 3-29
enabling interrupts 3-43
execution in timer-based models 3-41
execution profiling

subsystem 4-15
task 4-13

F
file and project operation

new 6-40
fixed-step solver 3-19
functions

overloading 2-26

G
generate optimized code 3-28
getting properties 2-25
ghsmulti 2-21
ghsmulti object properties 2-28

portnum 2-28
procnum 2-28

Green Hills MULTI® IDE objects
tutorial about using 2-2

Green Hills Software
general code generation options 3-26
processor options 3-22
run-time options 3-28
TLC debugging options 3-25

Green Hills Software model reference 3-68
Green Hills Software processor

code generation options 3-28

Index-1

Index

I
info 6-25
Inline Signal Processing Blockset functions

option 3-28
interrupts

enabling 3-43
mapping 3-43

intrinsics. See target function library
issues, using PIL 4-6

L
link filters properties

getting 2-25
link properties

about 2-27
setting 2-25

link properties, details about 2-27
links

closing Green Hills MULTI® 2-19
details 2-27
loading files into Green Hills MULTI®

IDE 2-11
quick reference 2-27
working with your processor 2-13

list 6-32
list object 6-32
list variable 6-32

M
mapping interrupts 3-43
Memory Allocate block 8-19
Memory Copy block 8-25
model execution 3-35
model reference 3-68

about 3-68
Archive_library 3-70
block limitations 3-71
modelreferencecompliant flag 3-71

setting build action 3-70
target preferences blocks 3-70
using 3-70

model schedulers 3-35
modelreferencecompliant flag 3-71
MULTI

starting from MATLAB 2-5
stopping from MATLAB 2-5

O
object

ghsmulti 2-21
object properties

quick reference table 2-27
objects

creating objects for Green Hills MULTI®
IDE 2-9

introducing the objects for Green Hills
MULTI® IDE tutorial 2-2

tutorial about using Automation Interface
for Green Hills MULTI® IDE 2-2

optimization, processor-specific 3-28
overloading 2-26

P
PIL

TimeMachine 4-7
PIL block 4-6
PIL cosimulation

definitions 4-4
how cosimulation works 4-5
overview 4-3

PIL issues 4-6
portnum 2-28
processor configuration options

overrun action 3-30
processor function library. See target function

library

Index-2

Index

processor information, get 6-25
processor-specific optimization 3-28
procnum 2-28
profiling execution

by subsystem 4-15
by task 4-13

project options
compiler options string 3-32
stack size 3-32

properties
link properties 2-27
referencing directly 2-25
retrieving 2-23

function for 2-25
retrieving by direct property referencing 2-25
setting 2-23

R
read register 6-52
Real-Time Workshop options

generate code only 3-24
Real-Time Workshop solver options 3-19
regread 6-52
regwrite 6-56
run-time options

overrun action 3-30
run—time options

build action 3-29

S
set overrun action, overrun action 3-30
set properties 2-23
set stack size 3-32
simulator

connect to 6-20
solver option settings 3-19
stack size, set stack size 3-32
start MULTI from MATLAB 2-5

stop MULTI from MATLAB 2-5
structure-like referencing 2-25
synchronous scheduling 3-41

T
target configuration options

system target file 3-23
target function library

assessing execution time after selecting a
library 3-64

create a custom library 3-67
optimization 3-61
seeing the library changes in your generated

code 3-64
selecting the library to use 3-63
use in the build process 3-62
using with link software 3-61
viewing library tables 3-67
when to use 3-63

target preferences blocks in referenced
models 3-70

TFL. See target function library
TimeMachine

using with PIL 4-7
timeout

timeout 2-28
timer, configure 8-46
timer-based models, execution 3-41
timer-based scheduler 3-41
timing 3-35
tutorials

objects for Green Hills MULTI® 2-2

V
viewing target function libraries 3-67

W
write register 6-56

Index-3

	toc
	Getting Started
	Product Overview
	The Structure and Components of Embedded IDE Link MU Software
	Embedded IDE Link MU Components
	Automation Interface
	Project Generator
	Verification
	Configuring Embedded IDE Link MU and Green Hills MULTI Software
	Configuring Your Embedded IDE Link MU Software

	Configuring Green Hills MULTI to use Full Directory Paths

	Automation Interface
	Getting Started with Automation Interface
	Introducing the Automation Interface Tutorial
	Functions for Working with Green Hills MULTI
	Methods for Working with ghsmulti Objects in Green Hills MULTI
	Running Green Hills MULTI on Your Desktop — Visibility

	Starting and Stopping Green Hills MULTI From the MATLAB Desktop
	Starting Green Hills MULTI From MATLAB
	Stopping Green Hills MULTI From MATLAB

	Running the Interactive Tutorial
	Querying Objects for Green Hills MULTI Software
	Loading Files into Green Hills MULTI Software
	Visibility and MULTI
	Running the Project
	Working With Data in Memory
	More Memory Data Manipulation
	Closing the Connections to Green Hills MULTI Software
	Tasks Performed During the Tutorial

	Constructing Objects
	Example — Constructor for ghsmulti Objects

	Properties and Property Values
	Working with Properties
	Setting and Retrieving Property Values
	Setting Property Values Directly at Construction
	Example — Setting Link Property Values at Construction

	Setting Property Values with set
	Example — Setting Link Property Values Using set

	Retrieving Properties with get
	Example — Retrieving Link Property Values Using get

	Direct Property Referencing to Set and Get Values
	Example — Direct Property Referencing in Links

	Overloaded Functions for ghsmulti Objects

	ghsmulti Object Properties
	Quick Reference to ghsmulti Properties
	Details About ghsmulti Object Properties
	hostname
	portnum
	timeout

	Project Generator
	Introducing Project Generator
	Using the Embedded IDE Link MU Blockset
	Project Generator Tutorial
	Process for Building and Generating a Project
	Create the Model
	Adding the Target Preferences Block to Your Model
	Specifying Simulink Configuration Parameters for Your Model
	Setting Solver Options
	Setting Real-Time Workshop Code Generation Options
	Setting Embedded IDE Link MU Code Generation Options

	Creating Your Project

	Code Generation Options for Supported Processors
	Setting Real-Time Workshop Category Options
	About Select Tree Category Options
	Target Selection
	System target file

	Build Process
	Custom Storage Class
	Ignore custom storage classes
	Generate code only

	Report Options
	Create Code Generation report
	Launch report automatically

	Debug Pane Options
	Optimization Pane Options
	Embedded IDE Link MU Pane Options
	Runtime Options
	Build action
	Interrupt overrun notification method
	Interrupt overrun notification function
	PIL block action
	Maximum time allowed to build project (s)
	Project Options
	Compiler options string
	System stack size (MAUs)
	Code Generation
	Link Automation
	Maximum time to complete MULTI operations (s)

	Overrun Indicator and Software-Based Timer

	Schedulers and Timing
	Configuring Models for Asynchronous Scheduling
	Before
	After
	Algorithm Inside the Function Call Subsystem Block

	Using Asynchronous Scheduling
	Idle Task
	Hardware Interrupt Triggered Task

	Comparing Synchronous and Asynchronous Interrupt Processing
	Using Synchronous Scheduling
	Using Asynchronous Scheduling
	Mapping and Enabling Interrupts in Generated Code

	Multitasking Scheduler Examples
	Three Odd-Rate Tasks Without Preemption and Overruns
	Two Tasks with the Base-Rate Task Overrunning, No Preemption
	Two Tasks with Sub-Rate 1 Overrunning Without Preemption
	Three Even-Rate Tasks with Preemption and No Overruns
	Three Odd-Rate Tasks Without Preemption and the Base and Sub-Rat
	Three Odd-Rate Tasks with Preemption and Sub-Rate 1 Task Overrun
	Three Even-Rate Tasks with Preemption and the Base-Rate and Sub-

	Optimizing Embedded Code with Target Function Libraries
	About Target Function Libraries and Optimization
	Code Generation Using the Target Function Library

	Using a Processor-Specific Target Function Library to Optimize C
	Process of Determining Optimization Effects Using Real-Time Prof
	Reviewing Processor-Specific Target Function Library Changes in
	Reviewing Code Manually
	Using Model-to-Code Tracing
	Using a File Differencing Scheme

	Reviewing Target Function Library Operators and Functions
	Creating Your Own Target Function Library

	Model Reference and Embedded IDE Link MU Software
	About Model Reference
	How Model Reference Works
	Model Reference in Simulation
	Model Reference in Code Generation

	Using Model Reference with Embedded IDE Link MU Software
	Build Action Setting
	Target Preferences Blocks in Reference Models
	Other Block Limitations

	Configuring Targets to Use Model Reference

	Verification
	What Is Verification?
	Using Processor-in-the-Loop
	Processor-in-the-Loop Overview
	Why Use Cosimulation?
	How Cosimulation Works

	PIL Block
	PIL Issues
	Generic PIL Issues
	Using Breakpoints and PIL
	Using TimeMachine and PIL

	Creating and Using PIL Blocks
	To create and use a PIL block

	Real-Time Execution Profiling
	Overview
	Profiling Execution by Tasks
	Profiling Execution By Subsystems

	Function Reference
	Constructor
	File and Project Operations
	Processor Operations
	Debug Operations
	Data Manipulation
	Status Operations

	Functions — Alphabetical List
	Block Reference
	Blackfin Support
	Core Support
	MPC5500 Support
	MPC7400 Support
	Target Preferences

	Blocks — Alphabetical List
	Embedded IDE Link MU Software Configuration Parameters
	Embedded IDE Link MU Pane
	Embedded IDE Link MU Overview
	Export MULTI link handle to base workspace
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	MULTI link handle name
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Profile real-time execution
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Profile by
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of profiling samples to collect
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Inline run-time library functions
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Compiler options string
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	System stack size (MAUs)
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	System heap size (MAUs)
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Build action
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Interrupt overrun notification method
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Interrupt overrun notification function
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	PIL block action
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Maximum time allowed to build project (s)
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Maximum time to complete MULTI operations (s)
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Source file replacement
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Examples
	Automation Interface
	Working with Links
	Project Generator
	Asynchronous Scheduler
	Mutlitasking Scheduler
	Verification

	Index

